Theoretical and Mathematical Physics

, Volume 95, Issue 2, pp 595–603 | Cite as

Descendants constructed from matter field in Landau-Ginzburg theories coupled to topological gravity

  • A. Losev


It is argued that gravitational descendants in the theory of topological gravity coupled to topological Landau-Ginzburg theory (not necessarily conformal) can be constructed from matter fields alone (without metric fields and ghosts). In this sense topological gravity is “induced.” We discuss the mechanism of this effect (that turns out to be connected with K. Saito's higher residue pairing: Kii1),Φ2)=K012)), and demonstrate how it works in a simplest nontrivial example: correlator on a sphere with four marked points. We also discuss some results on k-point correlators on a sphere. From the idea of “induced” topological gravity it follows that the theory of “pure” topological gravity (without topological matter) is equivalent to the “trivial” Landau-Ginzburg theory (with quadratic superpotential).


Ghost Marked Point Matter Field Residue Pairing High Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Witten E.// Commun. Math. Phys. 1988, V. 118. P. 411.Google Scholar
  2. [2]
    Labastida J., Pernici M., Witten E.// Nucl. Phys. 1988. V. B 310. P. 611.Google Scholar
  3. [3]
    Witten E.// Nucl. Phys. 1990 V. B 340. P. 281.Google Scholar
  4. [4]
    Dijkgraaf R., Witten E.// Nucl. Phys. 1990. V. B.342. P. 486.Google Scholar
  5. [5]
    Witten E. Preprint IASSNS-HEP-91/83 (1991).Google Scholar
  6. [6]
    Li K.// Nucl. Phys. 1991. V.B354. P. 711.Google Scholar
  7. [7]
    Eguchi T., Yang S.K.// Mod. Phys. Lett. 1990. V. A5. P. 1663.Google Scholar
  8. [8]
    Dijkgraaf R., Verlinde E., Verlinde H. Proc. of the Trieste Spring School 1990. Eds. M. Green et al. (World-Scientific, 1991).Google Scholar
  9. [9]
    Vafa C.// Mol. Phys. Lett. 1990. V. A6. P. 337.Google Scholar
  10. [10]
    Kharchev S., Marshakov A., Mironov A., Morozov A.// Preprint ITEP-M3/92, FIAN/TD103-92 (1992).Google Scholar
  11. [11]
    Distler J., Nelson P.// Commun. Math. Phys. 1991. V. 138. P. 273.Google Scholar
  12. [12]
    Losev A., Polyubin I., to appear.Google Scholar
  13. [13]
    Saito K.// Publ. RIMS, Kyoto Univ. 1983. V. 19. P. 1231.Google Scholar
  14. [14]
    Block B., Varchenko A. Preprint IASSNS 91/5 (1991).Google Scholar
  15. [15]
    Krichever I. Preprint LPTENS-92/18, (1992).Google Scholar
  16. [16]
    Witten E. Preprint IASSNS 91/26 (1991).Google Scholar
  17. [17]
    Verlinde E., Verlinde H.// Nucl. Phys. 1991. V. B348. P. 457.Google Scholar
  18. [18]
    Novikov V. A., Shifman M. A., Vainshtein A. I., Zakharov V. I.// Nucl. Phys. 1983. V. B223. P. 445.; Nucl. Phys. 1983. V. B229. P. 381; 394.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • A. Losev

There are no affiliations available

Personalised recommendations