Theoretical and Mathematical Physics

, Volume 95, Issue 2, pp 524–525 | Cite as

On Poisson homogeneous spaces of Poisson-Lie groups

  • V. G. Drinfeld


Poisson homogeneous spaces of a Poisson-Lie group G are described in terms of Lagrangian subalgebras of D(g), where D(g) is the double of the Lie bialgebra g corresponding to G.


Homogeneous Space Lagrangian Subalgebras Poisson Homogeneous Space 


  1. [1]
    Drinfeld V.G. Quantum groups. Proc. ICM-86 (Berkeley). V. 1. P. 798–820.Google Scholar
  2. [2]
    Semenov-Tian-Shansky M.A. Dressing transformations and Poisson group actions. Publ. RIMS Kyoto University, 1985. V. 21. N 6. P. 1237–1260.Google Scholar
  3. [3]
    Podleś P. Quantum spheres.// Lett. Math. Phys. 1987. V. 14. P. 193–202.Google Scholar
  4. [4]
    Dazord P., Sondaz D. Groupes de Poisson affines. Séminaire Sud-Rhodanien de Géométrie 1989, P. Dazord et A. Weinstein éd. MSRI publications, Springer-Verlag, 1990.Google Scholar
  5. [5]
    Lu J.-H.. Multiplicative and affine poisson structures on Lie groups. Ph.D. thesis, University of California, Berkeley, 1990.Google Scholar
  6. [6]
    Drinfeld V.G. Quasi-Hopf algebras.// Leningrad Math. Jornal. V. 1. 1990. N 6, P. 1419–1457.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • V. G. Drinfeld

There are no affiliations available

Personalised recommendations