Theoretical and Mathematical Physics

, Volume 95, Issue 2, pp 524–525 | Cite as

On Poisson homogeneous spaces of Poisson-Lie groups

  • V. G. Drinfeld


Poisson homogeneous spaces of a Poisson-Lie group G are described in terms of Lagrangian subalgebras of D(g), where D(g) is the double of the Lie bialgebra g corresponding to G.


Homogeneous Space Lagrangian Subalgebras Poisson Homogeneous Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    Drinfeld V.G. Quantum groups. Proc. ICM-86 (Berkeley). V. 1. P. 798–820.Google Scholar
  2. [2]
    Semenov-Tian-Shansky M.A. Dressing transformations and Poisson group actions. Publ. RIMS Kyoto University, 1985. V. 21. N 6. P. 1237–1260.Google Scholar
  3. [3]
    Podleś P. Quantum spheres.// Lett. Math. Phys. 1987. V. 14. P. 193–202.Google Scholar
  4. [4]
    Dazord P., Sondaz D. Groupes de Poisson affines. Séminaire Sud-Rhodanien de Géométrie 1989, P. Dazord et A. Weinstein éd. MSRI publications, Springer-Verlag, 1990.Google Scholar
  5. [5]
    Lu J.-H.. Multiplicative and affine poisson structures on Lie groups. Ph.D. thesis, University of California, Berkeley, 1990.Google Scholar
  6. [6]
    Drinfeld V.G. Quasi-Hopf algebras.// Leningrad Math. Jornal. V. 1. 1990. N 6, P. 1419–1457.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • V. G. Drinfeld

There are no affiliations available

Personalised recommendations