Theoretical and Mathematical Physics

, Volume 71, Issue 3, pp 616–626 | Cite as

Fermionic string model in spaces of lie groups

  • A. P. Isaev
Article

Keywords

String Model Fermionic String Fermionic String Model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    P. Di Vecchia, V. G. Knizhnik, J. L. Petersen, and P. Rossi, Nucl. Phys. B,353, 701 (1985); I. V. Volovich, Teor. Mat. Fiz.,63, 312 (1985); E. Abdalla and M. C. B. Abdalla, Phys. Lett. B,152, 59 (1985); P. Goddard, W. Nahm, and D. Olive, Phys. Lett. B,160, 111 (1985).Google Scholar
  2. 2.
    T. Curtright and C. Zachos, Phys. Rev. Lett.,53, 1799 (1984); R. Rohm, “Anomalous interactions for the supersymmetric nonlinear sigma-model in two dimensions,” Preprint, Princeton (1984).Google Scholar
  3. 3.
    D. Nemeschansky and S. Yankielowicz, Phys. Rev. Lett.,54, 620 (1985).Google Scholar
  4. 4.
    D. Altschuler and H. P. Nilles, Phys. Lett.,154, 135 (1985).Google Scholar
  5. 5.
    A. P. Isaev, “Bosonic and fermionic string models in the space of Lie groups,” Communication E2-85-82 [in English], JINR, Dubna (1985).Google Scholar
  6. 6.
    V. G. Kac, Lecture Notes in Phys.,94, 441 (1979).Google Scholar
  7. 7.
    M. A. Bershadsky, V. G. Knizhnik, and M. G. Teitelman, Phys. Lett. B,151, 31 (1985).Google Scholar
  8. 8.
    V. G. Knizhnik and A. B. Zamolodchikov, Nucl. Phys. B,247, 83 (1984); D. Friedan, Z. Qui, and S. Shenker, Phys. Lett. B,153, 77 (1985); H. Eichenhern, Phys. Lett. B,151, 26 (1985); I. T. Todorov, Phys. Lett. B,153, 77 (1985); P. Goddard and D. Olive, Nucl. Phys. B,257, 226 (1985); P. Goddard, A. Kent, and D. Olive, Phys. Lett. B,152, 88 (1985).Google Scholar
  9. 9.
    S. Mandelstam, Phys. Rep.,13C, 259 (1974).Google Scholar
  10. 10.
    A. P. Isaev, Pis'ma Zh. Eksp. Teor. Fiz.,33, 357 (1981); V. I. Borodulin and A. P. Isaev, Phys. Lett. B,117, 69 (1982).Google Scholar
  11. 11.
    P. P. Kulish, and S. A. Tsyplyaev, Teor. Mat. Fiz.,46, 172 (1981); Zap. Nauchn. Semin. LOMI,120, 122 (1982).Google Scholar
  12. 12.
    E. Witten, Commun. Math. Phys.,92, 455 (1984).Google Scholar
  13. 13.
    A. M. Polyakov, Phys. Lett. B,103, 207, 211 (1981).Google Scholar
  14. 14.
    P. A. Collins and R. W. Tucker, Nucl. Phys. B,121, 307 (1977).Google Scholar
  15. 15.
    E. A. Ivanov and S. O. Krivonos, Lett. Math. Phys.,7, 523 (1983).Google Scholar
  16. 16.
    A. P. Isaev, “Auxiliary spectral problem in fermionic string model,” Preprint R2-86-16 [in Russian], JINR, Dubna (1985).Google Scholar
  17. 17.
    A. V. Razumov and A. Yu. Taranov, “Collective coordinates on symplectic manifolds,” Preprint 81-49 [in Russian], Institute of High Energy Physics, Serpukhov (1981).Google Scholar
  18. 18.
    N. N. Bogolyubov, Ukr. Mat. Zh.,2, 3 (1950).Google Scholar
  19. 19.
    G. P. Pron'ko, A. V. Razumov, and L. D. Soloviev, “Some new results in classical theory of relativistic string,” Preprint 82-106 [in English], Institute of High Energy Physics, Serpukhov (1982).Google Scholar
  20. 20.
    A. P. Isaev, Teor. Mat. Fiz.,54, 209 (1983).Google Scholar
  21. 21.
    A. B. Zamolodchikov and Al. B. Zamolodchikov, Ann. Phys. (N.Y.),120, 253 (1979); L. D. Faddeev, “Quantum completely integrable field theory models,” in: Proc. Fourth International Symposium on Nonlocal Field Theories, Alushta, 1976 [in Russian], R2-12462, JINR, Dubna (1979), p. 249.Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • A. P. Isaev

There are no affiliations available

Personalised recommendations