Theoretical and Mathematical Physics

, Volume 92, Issue 3, pp 1063–1074 | Cite as

D-E classfiication of the local extensions ofsu2 current algebras

  • L. Michel
  • Y. S. Stanev
  • I. T. Todorov


A method is developed for constructing single valued rational 4-point functions of primary fields for su2 conformal current algebra satisfying the Knizhnik-Zamolodchikov equation. For integer conformal dimensions Δ these rational solutions are proven to be in one-to-one correspondence with non-diagonal modular invariant partition functions of the D-even and E-even series of the ADE classification.


Partition Function Conformal Dimension Rational Solution Current Algebra Primary Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Kastler D. (Ed.),The Algebraic Theory of Superselection Sectors. Introduction and Recent Results. Proc. Convegno Int. Palermo, World Scientific, Singapore, 1990; Haag, R.,Local Quantum Physics. Fields, Particles, Algebras, Springer, Berlin, 1992.Google Scholar
  2. [2]
    Buchholz D., Mack G., Todorov I.T., Localized automorphism of theU(1)-current algebra on the circle: an instructive example, Kastler D. [1], P. 356–378; Buchholz D., Mack G., Paunov R.R., Todorov, I.T. An algebraic approach to the classification of local conformal field theories. Proc. Int. Congress on Mathematical Physics, Swansea, Wales, July 1988. Eds. B.Simon, A.Truman, I.M.Davis. Bristol: Adam Hilger, 1989. P. 299–305, Nucl. Phys. B (Proc. Suppl.).5B (1988), 20.Google Scholar
  3. [3]
    Mack G.,Introduction to conformal invariant quantum field theory in two p and more dimensions.In:Nonperturbative Quantum Field Theory, Eds. G. 'tHooft et al.New York:Plenum Press, 1988.P. 353–383.Google Scholar
  4. [4]
    Furlan P., Sotkov G.M., Todorov I.T., Riv. Nuovo Cim.12:6 (1989), 1–202.Google Scholar
  5. [5]
    Buchholz D., Shultz-Mirbach H., Rev. Math. Phys.2 (1990), 105.Google Scholar
  6. [6]
    Cardy J.L, (for a later outgrow see Nucl. Phys. 1991. V.B366. P. 403), Nucl. Phys.B275 [FS 17] (1986), 200.Google Scholar
  7. [7]
    Capelli A., Itzykson C., Zuber J.-B., Nucl. Phys.B280 [FS 18] (1987), 445; Commun. Math. Phys.113 (1987), 1.Google Scholar
  8. [8]
    Seinberg N., Witten E., Nucl. Phys.B276 (1986), 272.Google Scholar
  9. [9]
    Nahm W., Int. J. Mod. Phys.A6 (1991), 2837.Google Scholar
  10. [10]
    Bouwknegt P., Phys. Lett.B184 (1987), 369.Google Scholar
  11. [11]
    Schellekens A.N., Yankielowicz, Nucl. Phys.B327 (1989), 673; Phys. Lett.227B (1989), 387; Int. J. Mod. Phys.A5 (1990), 2903.Google Scholar
  12. [12]
    Knizhnik V.G., Zamolodchikov A., Nucl. Phys.B247 (1984), 83.Google Scholar
  13. [13]
    Zamolodchikov A.B., Fateev V.A., (English transl.: Sov. J. Nucl. Phys. 1986, V. 43 P.657), Yad.Fiz.43 (1986), 1031.Google Scholar
  14. [14]
    Stanev Ya.S., Todorov I.T., Hadjiivanov L.K., Phys. Lett.B276 (1992), 87.Google Scholar
  15. [15]
    Belavin A.A., Polyakov, I.T., Zamolodchikov A.B., Nucl. Phys.B241 (1984), 333.Google Scholar
  16. [16]
    Michel L.,Invariants polynomiaux des groupes de symetrie moleculaire et cristallographique.In:Group Theoretical Methods in Physics.Proc. of the Fifth Int. Colloquium.New York:Academic Press, 1977.P. 75–91; Jaric M.V. Michel L., Sharp R.T. vol. 45, 1984.Google Scholar
  17. [17]
    Chevalley C., Amer. J. Math.77 (1955), 778.Google Scholar
  18. [18]
    Michel L.,Covariant symmetric non-associative algebras on group representations. In: Symmetry in Nature. A volume in honor of Luigi A. Radicati di Brozolo. V. II (Scuola Normale Superiore, Pisa 1989). P. 537–5488.Google Scholar
  19. [19]
    Gepner D., Witten E., Nucl. Phys.B278 (1986), 493.Google Scholar
  20. [20]
    Furlan P., Stanev Ya.S., Todorov I.T., Lett. Math. Phys.22 (1991), 307.Google Scholar
  21. [21]
    Bauer M., Di Franscesco Ph., Itzykson C., Zuber J.-B., Nucl. Phys.B362 (1991), 515.Google Scholar
  22. [22]
    Moore G., Seiberg N., Nucl. Phys.B313 (1989), 16.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • L. Michel
  • Y. S. Stanev
  • I. T. Todorov

There are no affiliations available

Personalised recommendations