Theoretical and Mathematical Physics

, Volume 99, Issue 3, pp 718–725 | Cite as

Quantization of planar ferromagnets in the Chern-Simons representation

  • L. Martina
  • O. K. Pashaev
  • G. Soliani


We formulate the two-dimensional planar classical continuous Heisenberg spin model as a constrained Chern-Simons gauged nonlinear Schrödinger system. Several physical consequences in the framework of the anyon field theory are discussed. We study the Hamiltonian structure of the model, which is quantized using the gauge invariant approach. A preliminary study of the quantum states is presented.


Field Theory Quantum State Physical Consequence Spin Model Hamiltonian Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Zee, Prog. Theor. Phys. Suppl.,107, 77 (1992).Google Scholar
  2. [2]
    R. Jackiw, and S-Y. Pi, Phys. Rev. Lett.,64, 2969 (1990);66, 2682 (1990); Phys. Rev.,D42, 3500 (1990).Google Scholar
  3. [3]
    R. E. Prange and S. M. Girvin, The Quantum Hall Effect, Springer-Verlag, New York, 1990.Google Scholar
  4. [4]
    S. C. Zhang T. H. Hansson, and S. Kivelson, Phys. Rev. Lett,62, 82 (1989).Google Scholar
  5. [5]
    Z. F. Ezawa, M. Hotta, and A. Iwazaki,Progr. Theor. Phys. Suppl.,107, 185 (1992).Google Scholar
  6. [6]
    L. Martina, O. K. Pashaev, and G. Soliani, Mod. Phys. Lett.A 8, 3241 (1993).Google Scholar
  7. [7]
    L. Martina, O. K. Pashaev, and G. Soliani, Phys. Rev.B 48 15787 (1993).Google Scholar
  8. [8]
    T. H. O'Dell,Ferromagnetodynamics, the dynamics of magnetic bubbles, domains and domain wall, New York, Wiley, 1981.Google Scholar
  9. [9]
    N. Papanicolau and T. N. Tomaras, Nucl. Phys.,B 360, 425 (1991).Google Scholar
  10. [10]
    V. G. Makhankov and O.K. Pashaev, Integrable Pseudospin Models in Condensed Matter, in Sov. Sci. Rev., Math. Phys.9, 1 (1992).Google Scholar
  11. [11]
    L. Faddeev and R. Jackiw, Phys. Rev. Lett.,60, 692 (1988).Google Scholar
  12. [12]
    P. A. M. Dirac, Lectures on Quantum Mechanics, Yeshiva University, New York, 1964.Google Scholar
  13. [13]
    P. de Sousa Gerbert, Phys. Rev.,D 42, 543 (1990).Google Scholar
  14. [14]
    T. Matsuyama,Phys. Lett.,B 228, 99 (1989).Google Scholar
  15. [15]
    C. G. Han, Phys. Rev.,D 47, 5521 (1993).Google Scholar
  16. [16]
    R. Banerjee, A. Chatterjee., and V. V. Sreedhar,Ann. Phys.,222, 254 (1993).Google Scholar
  17. [17]
    M. Chaichian and N. F. Nelipa, Introduction to Gauge Field Theory, Springer-Verlag, Berlin, 1984.Google Scholar
  18. [18]
    D. Boyanovsky, E. T. Newman, and C. Rovelli, Phys. Rev.,D 45 1210 (1992); D. Boyanovsky, Int. J. Mod. Phys.A7, 5917, (1992).Google Scholar
  19. [19]
    N. K. Pak and R. Percacci, J. Math. Phys.,30, 2951 (1989); N. K. Pak. Progr. Theor. Phys.,88, 585 (1992).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • L. Martina
  • O. K. Pashaev
  • G. Soliani

There are no affiliations available

Personalised recommendations