Skip to main content
Log in

Quantum theory of channeling

Transport coefficients and parameters of the equilibrium distribution of channeled particles in the quasiclassical case

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

  1. J. Lindhard, “Influence of crystal lattice on motion of energetic charged particles,” K. Dan. Vidensk. Selsk. Mat.-Fys. Medd.,34, 3 (1965).

    Google Scholar 

  2. J. S. Rosner, W. M. Gibson, and J. A. Golovchenko, “Quantitative study of the transmission of axially channeled protons in thin silicon crystals,” Phys. Rev. B,18, 1066 (1978).

    Google Scholar 

  3. I. S. Bitenskii and L. G. Gurvich, “Establishment of statistical equilibrium during channeling,” Dokl. Akad. Nauk Uzb. SSR, No. 11, 26 (1977).

    Google Scholar 

  4. Yu. Kagan and Yu. V. Kononets, “Theory of channeling. III. Energy losses of fast particles,” Zh. Eksp. Teor. Fiz.,66, 1693 (1974).

    Google Scholar 

  5. D. N. Zubarev and Yu. A. Kashlev, “Quantum theory of channeling.Generalized transport equations,” Teor. Mat. Fiz.,29, 376 (1976).

    Google Scholar 

  6. Yu. A. Kashlev, “Quantum theory of channeling. Contribution of multiple scattering of channeled particles by electrons to the dechanneling rate,” Teor. Mat. Fiz.,41, 89 (1979).

    Google Scholar 

  7. S. Datz, C. D. Moak, T. S. Noggle, B. R. Appleton, and H. O. Lutz, “Potential-energy and differentialstopping-power functions from energy-loss spectra of fast ions channeled in gold single crystals,” Phys. Rev.,179, 315 (1969).

    Google Scholar 

  8. M. T. Robinson,“Deduction of interaction potentials from planar-channeling experiments,”Phys. Rev. B,4, 1461 (1971).

    Google Scholar 

  9. K. Dettmann, “Stopping power of fast channeled protons in Hartree-Fock approximation,” Z. Phys.,A272, 227 (1975).

    Google Scholar 

  10. I. Prigogine and T. A. Bak, “Diffusion and chemical reaction in a one-dimensional condensed system,” J. Chem. Phys.,31, 1368 (1959).

    Google Scholar 

  11. A. Érdelyi et al. (eds). Higher Transcendental Functions, (California Institute of Technology H. Bateman M. S. Project), Vol. 1, McGraw Hill, New York (1953).

    Google Scholar 

  12. N. Matsunami and N. Itoh, “Validity of the continuum approximation in calculating the scattering yields for atom location,” Radiat. Eff.,31, 47 (1976).

    Google Scholar 

  13. H. Kudo, “Dechanneling of fast ions in distorted crystals,” J. Phys. Soc. Jpn.,40, 1645 (1976).

    Google Scholar 

  14. R. P. Bell, “Coefficient of permeability for parabolic potential,” Trans. Faraday Soc.,55, 1 (1959).

    Google Scholar 

  15. D. V. Morgan and D. R. Jackson, “Planar dechanneling studies in diamond type lattices,” Nucl. Instrum. Methods,132, 153 (1976).

    Google Scholar 

  16. K. Morita, “Dechanneling of heavy charged particles in diamond lattices,” Radiat. Eff.,14, 195 (1971).

    Google Scholar 

  17. B. R. Appleton, J. H. Barrett, T. S. Noggle, and C. D. Moak, “Orientation dependence of intensity and energy loss of hyperchanneled ions,” Radiat. Eff.,13, 171 (1972).

    Google Scholar 

  18. F. Abel, G. Amsel, M. Bruneaux, C. Cohen, and A. L'Hoir, “Backscattering study and theoretical investigation of planar-channeling processes,” Phys. Rev. B,13, 993 (1976).

    Google Scholar 

  19. Y. H. Ohtsuki, “Inelastic scattering in channeling,” in: Atomic Collisions in Solids, Vol. 2, New York (1975), p. 897.

  20. J. B. Sanders and H. E. Roosendaal, “Non-linear dependence of density of elastic stopping power,” Nucl. Instrum. Methods,132, 267 (1976).

    Google Scholar 

  21. L. Van Hove, “Quantum mechanical perturbation and kinetic equation,” Phys. Rev.,106, 874 (1957).

    Google Scholar 

  22. J. D. Melvin and T. A. Tombrello, “Energy loss of low energy protons channeling in silicon crystals,” Radiat. Eff.,26, 113 (1975).

    Google Scholar 

  23. J. H. Barrett, “Breakdown of the statistical-equilibrium hypothesis in channeling,” Phys. Rev. Lett.,31, 1542 (1973).

    Google Scholar 

  24. T. Oshiyama, H. Kudo, and M. Mannami, “A diffusion model of planar channeling of fast charged particles. Backscattered energy spectra and diffusion constant,” J. Phys.Soc. Jpn.,36, 1107 (1974).

    Google Scholar 

  25. H. E. Schiøtt, E. Bonderup, J. U. Andersen, and H. Esbensen, “Axial dechanneling. A theoretical study,” in: Atomic Collisions in Solids, Vol. 2, New York (1975), p. 891.

  26. M. Kitagawa and Y. H. Ohtsuki, “Modified dechanneling theory and diffusion coefficients,” Phys. Rev. B.8, 3117 (1973).

    Google Scholar 

  27. T. Waho and Y. H. Ohtsuki, “The diffusion of channeled beams due to deviations from the continuumpotential model,” Radiat. Eff.,27, 151 (1976).

    Google Scholar 

  28. T. Waho, “Planar dechanneling of protons in Si and Ge,” Phys. Rev.,14, 4830 (1976).

    Google Scholar 

  29. Z. Vager and D. S. Gemmell, “Polarization induced in a solid by the passage of fast charged particles,” Phys. Rev. Lett.,37, 1352 (1976).

    Google Scholar 

  30. F. N. Eisen and M. T. Robinson, “Oscillation frequencies of protons in planar channels of silicon,” Phys. Rev. B,4, 1457 (1971).

    Google Scholar 

  31. M. Kitagawa and Y. H. Ohtsuki, “Inelastic scattering of slow ions in channeling,” Phys. Rev.,9, 4719 (1974).

    Google Scholar 

Download references

Authors

Additional information

A. A. Baikov Institute of Metallurgy, Academy of Sciences of the USSR. Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 47, No. 1, pp. 125–139, April, 1981.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kashlev, Y.A. Quantum theory of channeling. Theor Math Phys 47, 359–369 (1981). https://doi.org/10.1007/BF01017028

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01017028

Keywords

Navigation