Theoretical and Mathematical Physics

, Volume 47, Issue 1, pp 320–324 | Cite as

Kowalewski basis for the hydrogen atom

  • I. V. Komarov
Article

Keywords

Hydrogen Hydrogen Atom 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    V. A. Fock, “The hydrogen atom and non-Euclidean geometry,” Izv. Akad. Nauk SSSR, Ser. Fiz.,8, 169 (1935).Google Scholar
  2. 2.
    E. G. Kalnins, W. Miller Jr, and P. Winternitz, “The O (4) group, separation of variables and the hydrogen atom,” SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.,30, 630 (1976).Google Scholar
  3. 3.
    I. Lukach, “On complete sets of observables on a sphere in four-Euclidean space,” Teor. Mat. Fiz.,31, 275 (1977).Google Scholar
  4. 4.
    V. I. Arnol'd, Mathematical Methods of Classical Mechanics [in Russian], Nauka, Moscow (1974), p. 280.Google Scholar
  5. 5.
    P. Ya. Polubarinova-Kochina, “On algebraic integrals and single-valued solutions of the problem of the rotation of a rigid body around a fixed point,” in: Motion of Rigid Bodies [in Russian], Akad. Nauk SSSR, Moscow (1940), p. 157.Google Scholar
  6. 6.
    S. V. Kovalevskaya, (M. M. E. Kowalewski), “Rotation of a rigid body around a fixed point,” in: Scientific Works [in Russian], USSR Academy of Sciences, Moscow (1948), pp. 153–220.Google Scholar
  7. 7.
    I. Lukach, “On a complete set of quantum-mechanical observables on a two-dimensional sphere,” Teor. Mat. Fiz.,14, 366 (1973).Google Scholar
  8. 8.
    G. V. Kolosov, “On a property of Kowalewski's problem of the rotation of a rigid body around a fixed point,” Trudy Otdeliniya Fizich. Nauk Obshchestva Lyubit. Estestvoznaniya,11, 3 (1901).Google Scholar
  9. 9.
    O. Lapporte, “Note on Kowalewski's top in quantum mechanics,” Phys. Rev.,43, 548 (1933).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • I. V. Komarov

There are no affiliations available

Personalised recommendations