Advertisement

Theoretical and Mathematical Physics

, Volume 47, Issue 1, pp 281–301 | Cite as

Do extended bodies move along geodesics of Riemannian space-time?

  • V. I. Denisov
  • A. A. Logunov
  • M. A. Mestvirishvili
Article

Keywords

Extended Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    R. H. Dicke, “The lecture on gravitation,” in: Proc. of the Intern. School of Physics, Enrico Fermi, New York (1962), pp. 16–29.Google Scholar
  2. 2.
    K. Nordtvedt Jr, “Equivalence principle for massive bodies,” Phys. Rev.,169, 1014 (1968).Google Scholar
  3. 3.
    C. M. Will, “Parametrized post-Newtonian hydrodynamics and the Nordtvedt effect,” Astrophys. J.,163, 611 (1971).Google Scholar
  4. 4.
    R. H. Dicke, “General relativity: survey and experimental test,” in: Gravitation and the Universe, Philadelphia (1969), pp. 19–24.Google Scholar
  5. 5.
    K. Nordtvedt Jr “Testing relativity with laser ranging to the moon,” Phys. Rev.170, 1186 (1968).Google Scholar
  6. 6.
    K. S. Thorne and C. M. Will, “High-precision tests of general relativity,” Comments Astrophys. Space Phys.,2, 35 (1970).Google Scholar
  7. 7.
    K. Nordtvedt Jr “Post-Newtonian gravitational effects in lunar laser ranging,” Phys. Rev. D,7, 2347 (1973).Google Scholar
  8. 8.
    J. G. Williams et al., “New test of the equivalence principle from lunar laser ranging,” Phys. Rev. Lett.,36, 551 (1976).Google Scholar
  9. 9.
    I. I. Shapiro, “Verification of the principle of equivalence for massive bodies,” Phys. Rev. Lett.,36, 555 (1976).Google Scholar
  10. 10.
    R. A. Hulse and J. H. Taylor, “Discovery of a pulsar in a binary system,” Astrophys. J.,195, L51 (1975).Google Scholar
  11. 11.
    J. H. Taylor, “Discovery of a pulsar in a binary system,” Ann. N.Y. Acad. Sci.,262, 490 (1975).Google Scholar
  12. 12.
    J. H. Taylor, et al., “Further observations of the binary pulsar PSR 1913+16,” Astrophys. J.,206, L53 (1976).Google Scholar
  13. 13.
    J. H. Taylor, L. A. Fowler, and P. M. McCulloch, “Measurements of general relativistic effects in the binary pulsar PSR 1913+16,” Nature (London),277, 437 (1979).Google Scholar
  14. 14.
    C. M. Will and K. Nordtvedt Jr, “Preferred-frame theories and an extended PPN formalism,” Astrophys. J.,177, 757 (1972).Google Scholar
  15. 15.
    V. A. Fock, The Theory of Space, Time and Gravitation, Oxford (1964).Google Scholar
  16. 16.
    S. Chandrasekhar and G. Contopoulos, “On a post-Galilean transformation appropriate to the post-Newtonian theory of Einstein, Infeld, and Hoffmann,” Proc. R. Soc. London Ser. A,298, 123 (1967).Google Scholar
  17. 17.
    C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, W. H. Freeman, San Francisco (1973).Google Scholar
  18. 18.
    V. N. Zharkov, Internal Structure of the Earth and the Planets [in Russian], Nauka, Moscow (1978).Google Scholar
  19. 19.
    A. A. Logunov et al., “New notions of space-time and gravitation,” Teor. Mat. Fiz.,40, 291 (1979). A. A. Vlasov, V. I. Denisov, A. A. Logunov, and M. A. Mestvirishvili, “Gravitational effects in the field theory of gravitation,” Teor. Mat. Fiz.,43, 147 (1980); V. I. Denisov, A. A. Logunov, and M. A. Mestvirishvili, “The field theory of gravitation and new notions of space-time,” Fiz. Elem. Chastits At. Yadra,12, 3 (1981); V. I. Denisov and A. A. Logunov, “The field theory of gravitation,” in: Proc. Ninth Intern. Conf. on General Relativity and Gravitation, Jena (1980), pp. 468–469.Google Scholar
  20. 20.
    C. W. Allen, Astrophysical Quantities, Athlone Press, London (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • V. I. Denisov
  • A. A. Logunov
  • M. A. Mestvirishvili

There are no affiliations available

Personalised recommendations