Advertisement

Theoretical and Mathematical Physics

, Volume 78, Issue 1, pp 41–49 | Cite as

Symmetric spaces and Higgs models in the method of dimensional reduction. I. Potentials of the scalar fields of the reduced theory

  • I. P. Volobuev
  • Yu. A. Kubyshin
  • Zh. M. Mourão
Article

Keywords

Scalar Field Dimensional Reduction Symmetric Space Higgs Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    P. Forgacs and N. S. Manton, Commun. Math. Phys.,72, 15 (1980).Google Scholar
  2. 2.
    R. Coquereaux and A. Jadczyk, Commun. Math. Phys.,90, 79 (1983).Google Scholar
  3. 3.
    I. P. Volobuev and G. Rudol'f, Teor. Mat. Fiz.,62, 388 (1985).Google Scholar
  4. 4.
    N. S. Manton, Nucl. Phys. B,158, 141 (1979).Google Scholar
  5. 5.
    G. Chapline and N. S. Manton, Nucl. Phys. B,184, 391 (1981).Google Scholar
  6. 6.
    K. Farakos, G. Koutsoumbas, M. Surridge, and G. Zoupanos, “Dimensional reduction and the Higgs potential,” Preprint CERN TH. 4533/86, CERN (1986).Google Scholar
  7. 7.
    I. P. Volobuev and Yu. A. Kubyshin, Teor. Mat. Fiz.,68, 225, 368 (1986).Google Scholar
  8. 8.
    J. A. Wolf, Spaces of Constant Curvature, McGraw-Hill, New York (1967); S. Helgason, Differential Geometry and Symmetric Spaces, New York (1962).Google Scholar
  9. 9.
    E. Gremmer and I. Scherk, Nucl. Phys. B,118, 61 (1977); A. Salam and I. Strathdee, Ann. Phys. (N.Y.),141, 316 (1982).Google Scholar
  10. 10.
    I. P. Volobuev and Yu. A. Kubyshin, Pis'ma Zh. Eksp. Teor. Fiz.,45, 455 (1987).Google Scholar
  11. 11.
    A. S. Schwarz, Commun. Math. Phys.,56, 79 (1977).Google Scholar
  12. 12.
    A. A. Kirillov, Elements of the Theory of Representations [in Russian], Nauka, Moscow (1978).Google Scholar
  13. 13.
    E. B. Dynkin, Mat. Sb.,30, 349 (1952).Google Scholar
  14. 14.
    M. Gotto and F. Grosshan, Semisimple Lie Algebras (Lecture Notes, Vol. 38), Dekker (1978).Google Scholar
  15. 15.
    K. Pilch and A. N. Schellekens, Nucl. Phys. B,256, 109 (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • I. P. Volobuev
  • Yu. A. Kubyshin
  • Zh. M. Mourão

There are no affiliations available

Personalised recommendations