Theoretical and Mathematical Physics

, Volume 76, Issue 3, pp 945–956 | Cite as

Dynamics of quasiparticles in a nonstationary random field

  • E. N. Bratus'
  • S. A. Gredeskul
  • L. A. Pastur
  • V. S. Shumeiko
Article

Keywords

Random Field 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    E. N. Bratus' and V. S. Schumeiko, J. Low Temp. Phys.,60, 109 (1985).Google Scholar
  2. 2.
    E. N. Bratus', S. A. Gredeskul, L. A. Pastur, and V. S. Shumeiko, Fiz. Nizk. Temp.,12, 322 (1986).Google Scholar
  3. 3.
    L. V. Keldysh, Fiz. Tverd. Tela (Leningrad),4, 2265 (1962).Google Scholar
  4. 4.
    I. M. Lifshits, S. A. Gredeskul, and L. A. Pastur, Reduction to the Theory of Disordered Systems [in Russian], Nauka, Moscow (1982).Google Scholar
  5. 5.
    V. K. Vardazaryan, “Spectral theory of a one-dimensional random Dirac system,” Paper No. 555-83 Deposited at VINITI [in Russian], Moscow (1983).Google Scholar
  6. 6.
    M. M. Benderskii and L. A. Pastur, Zh. Eksp. Teor. Fiz.,57, 284 (1969).Google Scholar
  7. 7.
    S. A. Gredeskul and L. A. Pastur, Zh. Eksp. Teor. Fiz.,75, 1444 (1978).Google Scholar
  8. 8.
    L. A. Pastur and É. P. Fel'dman, Zh. Eksp. Teor. Fiz.,67, 487 (1974).Google Scholar
  9. 9.
    S. Kotani, Contemp. Math.,50, 277 (1986).Google Scholar
  10. 10.
    T. N. Antsygina, L. A. Pastur, and V. A. Slyusarev, Fiz. Nizk. Temp.,7, 5 (1981).Google Scholar
  11. 11.
    M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 2, Academic Press, New York (1975).Google Scholar
  12. 12.
    T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin (1966).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • E. N. Bratus'
  • S. A. Gredeskul
  • L. A. Pastur
  • V. S. Shumeiko

There are no affiliations available

Personalised recommendations