Theoretical and Mathematical Physics

, Volume 76, Issue 3, pp 930–939 | Cite as

Construction of eigenfunctions of the discrete spectrum and principle for selecting eigenvalues for a radial Schrödinger operator with nearly Coulomb potential

  • M. A. Shubova


Discrete Spectrum Coulomb Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    D. R. Hartree, The Calculation of Atomic Structure, Wiley, New York (1957).Google Scholar
  2. 2.
    Fundamental Formulas of Physics [Russian translation], Mir, Moscow (1957).Google Scholar
  3. 3.
    Atoms in Astrophysics [Russian translations] Mir, Moscow (1986).Google Scholar
  4. 4.
    L. A. Sakhnovich, Izv. Akad. Nauk SSSR, Ser. Mat.,30, 1297 (1986).Google Scholar
  5. 5.
    M. A. Shubova, Probl. Mat. Fiz., Leningrad State University,9, 145 (1979).Google Scholar
  6. 6.
    M. A. Shubova, Tr. Mosk. Inst. Akad. Nauk SSSR,159, 175 (1983).Google Scholar
  7. 7.
    M. A. Shubova, Tr. Mosk. Inst. Akad. Nauk SSSR,159, 190 (1983).Google Scholar
  8. 8.
    E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge (1965).Google Scholar
  9. 9.
    L. J. Slater, Confluent Hypergeometric Functions [Russian translation], Computational Center, USSR Academy of Sciences, Moscow (1986).Google Scholar
  10. 10.
    M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover (1964).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • M. A. Shubova

There are no affiliations available

Personalised recommendations