Theoretical and Mathematical Physics

, Volume 38, Issue 2, pp 146–153 | Cite as

General properties of potentials for which the Schrödinger equation can be solved by means of hypergeometric functions

  • G. A. Natanzon


General Property Hypergeometric Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. K. Zaichenko and V. S. Ol'khovskii, Teor. Mat. Fiz.,27, 267 (1976).Google Scholar
  2. 2.
    V. L. Bakhrakh and S. I. Vetchinkin, Teor. Mat. Fiz.,6, 392 (1971).Google Scholar
  3. 3.
    K. I. Ivanov, Nauchni Tr. Fiz. (Plovdiv),10, 57 (1972).Google Scholar
  4. 4.
    A. Hautot, Bull. Soc. R. Sci. Liege,43, 348 (1974).Google Scholar
  5. 5.
    G. Pöschl and F. Teller, Z. Phys.,83, 143 (1933).Google Scholar
  6. 6.
    A. Hautot, J. Math. Phys.,14, 1320 (1973).Google Scholar
  7. 7.
    B. Fogarassy and G. Ne'meth, Acta Phys. Acad. Sci. Hung.,11, 265 (1960).Google Scholar
  8. 8.
    T. Tietz, J. Chem. Phys.,38, 3036 (1961).Google Scholar
  9. 9.
    G. Bencze, Commentat. Phys. Math.,31, 1 (1966).Google Scholar
  10. 10.
    V. V. Pustovalov, Preprint IAÉ-2596 [in Russian] (1976).Google Scholar
  11. 11.
    T. Tietz, Acta Phys. Pol.,26, 353 (1964).Google Scholar
  12. 12.
    M. Badawi, N. Bessis, and G. Bessis, J. Phys. B.,5, 157 (1972).Google Scholar
  13. 13.
    R. T. Pack, J. Chem. Phys.,57, 4612 (1972).Google Scholar
  14. 14.
    V. K. Vaidyan and C. Santaram, Indian J. Pure Appl. Phys.,9, 850 (1971).Google Scholar
  15. 15.
    N. Rosen and P. M. Morse, Phys. Rev.,42, 210 (1932).Google Scholar
  16. 16.
    M. F. Manning and N. Rosen, Phys. Rev.,44, 953 (1933).Google Scholar
  17. 17.
    C. Eckart, Phys. Rev.,35, 1303 (1930).Google Scholar
  18. 18.
    G. A. Natanzon, Vestn. Leningr. Univ., No. 10, 22 (1971).Google Scholar
  19. 19.
    F. M. Morse and H. Feshbach, Methods of Theoretical Physics, Vol. 2, McGraw Hill, New York (1953).Google Scholar
  20. 20.
    L. Infeld, Rev. Mod. Phys.,23, 21 (1951).Google Scholar
  21. 21.
    A. I. Baz', Ya. B. Zel'dovich, and A. M. Perelomov, Scattering, Reactions and Decay in Nonrelativistic Quantum Mechanics, Jerusalem (1969).Google Scholar
  22. 22.
    G. A. Natanzon, Vestn. Leningr. Univ., No. 6, 33 (1977).Google Scholar
  23. 23.
    G. A. Natanzon, Opt. Spektrosk.,38, 513 (1975).Google Scholar
  24. 24.
    A. Érdelyi et al. (Eds), Higher Transcendental Functions, (California Institute of Technology H. Batoman M. S. Project), Vol. 1, McGraw Hill, New York (1953).Google Scholar
  25. 25.
    L. Hultnen, Ark. Mat. Astron. Fiz.,28A(5),29B(1) (1942).Google Scholar
  26. 26.
    A. Bhattacharjie and E. C. G. Sudarchan, Nuovo Cimento,25, 864 (1962).Google Scholar
  27. 27.
    R. G. Newton, Scattering Theory of Waves and Particles, New York (1966).Google Scholar
  28. 28.
    P. M. Morse, Phys. Rev.,34, 57 (1929).Google Scholar
  29. 29.
    M. Fuda, Phys. Rev. C,1, 1910 (1970).Google Scholar
  30. 30.
    S. S. Tokar and Yu. K. Tomashuk, Visnik L'viv, Un-tu, Ser. Fiz., No. 11, 21–23, 80 (1976).Google Scholar
  31. 31.
    S. S. Tokar' and Yu. K. Tomashuk, Izv. Vyssh. Uchebn. Zaved. Fiz., No. 5, 27 (1975).Google Scholar
  32. 32.
    S. I. Vetchinkin and V. L. Bachrach, Int. J. Quantum Chem.,6, 143 (1972).Google Scholar
  33. 33.
    E. T. Whittaker and G. N. Watson, A. Course of Modern Analysis, Vol. 2, Cambridge (1965).Google Scholar
  34. 34.
    R. Jost, J. Wheeler, and G. Breit, Phys. Rev.,49, 174 (1936).Google Scholar
  35. 35.
    A. M. Perelomov, V. S. Popov, and M. V. Terent'ev, Zh. Eksp. Teor. Fiz.,51, 309 (1966).Google Scholar
  36. 36.
    Yu. N. Demkov and V. A. Ostrovskii, Zh. Eksp. Teor. Fiz.,60, 2011 (1971).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • G. A. Natanzon

There are no affiliations available

Personalised recommendations