Advertisement

Theoretical and Mathematical Physics

, Volume 56, Issue 2, pp 752–760 | Cite as

Bäcklund transformation for the Liouville equation and gauge conditions in the theory of a relativistic string

  • B. M. Barbashov
  • V. V. Nesterenko
Article

Keywords

Gauge Condition Liouville Equation Relativistic String 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. M. Polyakov, Phys. Lett. B.103, 207, 211 (1981).Google Scholar
  2. 2.
    F. Lund and T. Regge, Phys. Rev. D,14, 1524 (1976).Google Scholar
  3. 3.
    R. Omnes, Nucl. Phys. B,149, 269, 27 (1979).Google Scholar
  4. 4.
    B. M. Barbashov and A. L. Koshkarov, Teor. Mat. Fiz.,39, 27 (1979).Google Scholar
  5. 5.
    B. M. Barbashov, V. V. Nesterenko, and A. M. Chervyakov, Teor. Mat. Fiz.,40, 15 (1979).Google Scholar
  6. 6.
    A. A. Zheltukhin, Yad. Fiz.,33, 1723 (1981); Teor. Mat. Fiz.,52, 73 (1982).Google Scholar
  7. 7.
    K. Kamimura, Lett. Math. Phys.,4, 115 (1980).Google Scholar
  8. 8.
    B. M. Barbashov, V. V. Nesterenko, and A. M. Chervyakov, Teor. Mat. Fiz.,52, 3 (1982).Google Scholar
  9. 9.
    B. M. Barbashov, V. V. Nesterenko, and A. M. Chervyakov, Commun. Math. Phys.,84, 471 (1982).Google Scholar
  10. 10.
    B. M. Barbashov, A. L. Koshkarov, and V. V. Nesterenko, “Embedding equations of the world surface of a relativistic string in multidimensional spaces,” Soobshchenie (Communication) R2-82-647 [in Russian], JINR, Dubna (1982).Google Scholar
  11. 11.
    J. Scherk, Rev. Mod. Phys.,47, 123 (1975).Google Scholar
  12. 12.
    B. M. Barbashov and V. V. Nesterenko, Fiz. Elem. Chastits At. Yadra,9, 709 (1978).Google Scholar
  13. 13.
    J. A. Favard, Cours de Géometrie Différentielle Locale, Paris (1957).Google Scholar
  14. 14.
    H. Flanders, Differential Forms, Academic Press, New York (1963).Google Scholar
  15. 15.
    L. P. Eisenhart, Riemannian Geometry, Princeton (1966).Google Scholar
  16. 16.
    Solitons in Action (Proc. of a Workshop, Redstone Arsenal, 1977, eds. K. Longren and A. Scott), United States Army Research Office, Durham, math. div., New York (1978).Google Scholar
  17. 17.
    E. Braaten, T. Curtright, and C. Thorn, “Quantum Bäcklund transformations for the Liouville theory,” Preprint UFTP-82-18, University of Florida (1982).Google Scholar
  18. 18.
    B. M. Barbashov and V. V. Nesterenko, “Bäcklund transformation for the Liouville equation and gauge conditions in the relativistic string theory,” Preprint E2-82-922 [in English], JINR, Dubna (1982).Google Scholar
  19. 19.
    L. P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces, Dover Publications, New York (1960).Google Scholar
  20. 20.
    B. M. Barbashov and V. V. Nesterenko, Fortschr. Phys.,B28, 427 (1980).Google Scholar
  21. 21.
    B. M. Barbashov and V. V. Nesterenko, Hadronic J.,5, 659 (1982).Google Scholar
  22. 22.
    M. Marnelius, Nucl. Phys. B,211, 14 (1983).Google Scholar
  23. 23.
    J. L. Gervais and A. Neveu, Nucl. Phys. B,199, 59 (1982);209, 125 (1982).Google Scholar
  24. 24.
    T. L. Curtright and C. B. Thorn, Phys. Rev. Lett.,48, 1309 (1982).Google Scholar
  25. 25.
    E. D'Hoker and R. Jackiw, Phys. Rev. D,15, 3517 (1982).Google Scholar
  26. 26.
    E. Durhus, P. Olesen, and J. L. Petersen, Nucl. Phys. B,196, 498 (1982).Google Scholar
  27. 27.
    J. Honerkamp, J. Math. Phys.,22, 277 (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • B. M. Barbashov
  • V. V. Nesterenko

There are no affiliations available

Personalised recommendations