Advertisement

Theoretical and Mathematical Physics

, Volume 89, Issue 1, pp 1024–1028 | Cite as

Spectrum of a self-adjoint operator in L2 (K), where K is a local field; Analog of the Feynman-Kac formula

  • R. S. Ismagilov
Article

Keywords

Local Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    I. M. Gel'fand, M. I. Graev, and I. I. Pyatetskii-Shapiro, Representation Theory and Automorphic Functions [in Russian], Nauka, Moscow (1966).Google Scholar
  2. 2.
    Saloffe-Coste Laurent, “Pseudodifferential operators on local fields,” C. R. Acad. Sci. Ser. 1,2, 171 (1983).Google Scholar
  3. 3.
    E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations, Vol. 2, Clarendon Press, Oxford (1958).Google Scholar
  4. 4.
    V. S. Vladimirov, Usp. Mat. Nauk,43, 263 (1988).Google Scholar
  5. 5.
    I. M. Gel'fand and N. Ya. Vilenkin, Generalized Functions, Vol. 4, Applications of Harmonic Analysis, Academic Press, New York (1964).Google Scholar
  6. 6.
    M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 2, Academic Press, New York (1975).Google Scholar
  7. 7.
    R. S. Ismagilov, Izv. Akad. Nauk SSSR, Ser. Mat.,31, 361 (1967).Google Scholar
  8. 8.
    R. S. Ismagilov, Izv. Akad. Nauk SSSR, Ser. Mat.,33, 1296 (1969).Google Scholar
  9. 9.
    V. S. Vladimirov and I. V. Volovitch, Lett. Math. Phys.,18, 43 (1989).Google Scholar
  10. 10.
    V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, Izv. Akad. Nauk SSSR, Ser. Mat.,54, 275 (1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • R. S. Ismagilov

There are no affiliations available

Personalised recommendations