Journal of Statistical Physics

, Volume 9, Issue 1, pp 23–44 | Cite as

Phase transition of hard hexagons on a triangular lattice

  • Ole J. Heilmann
  • Eigil Praestgaard


Systems of hard hexagons on a triangular lattice are investigated. The orientation of the hexagons is kept fixed, while the size of the hexagons is varied. The existence of a phase transition is proved for all sizes by means of the Peierls'argument. The proof does not imply a phase transition in the continuous limit.

Key words

Lattice gas phase transition Peierls' argument 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. E. Peierls,Proc. Camb. Phil. Soc. 32:477 (1936).Google Scholar
  2. 2.
    R. Griffiths,Phys. Rev. 136A:437 (1964).Google Scholar
  3. 3.
    R. L. Dobrushin,Theor. Prob, and Appl. 10(2):209 (1965); inVth Symp. Mathematical Stat. and Prob., Vol. 3 (1967), p. 73.Google Scholar
  4. 4.
    F. A. Berezin and J. G. Sinai,Trans. Moscow Math. Soc. 17:219 (1967); J. Ginibre, A. Grossmann, and D. Ruelle,Commun. Math. Phys. 3:187 (1966); J. L. Lebowitz and G. Gallavotti,J. Math. Phys. 12:7 (1971).Google Scholar
  5. 5.
    D. Ruelle,Phys. Rev. Lett. 27 (1971), 1040.Google Scholar
  6. 6.
    R. L. Dobrushin,Funct. Anal. Appl. 2(4):44 (1968) [English transi.2:302 (1968)].Google Scholar
  7. 7.
    O. J. Heilmann,Lett. Nuovo Cimento 3:95 (1972).Google Scholar
  8. 8.
    L. K. Runnels and L. L. Combs,J. Chem. Phys. 45:2482 (1966).Google Scholar
  9. 9.
    J. Orban and A. Bellemans,J. Chem. Phys. 49:363 (1968).Google Scholar
  10. 10.
    L. K. Runnels, J. R. Craig, and H. R. Streiffer,J. Chem. Phys. 54:2004 (1971).Google Scholar

Copyright information

© Plenum Publishing Corporation 1973

Authors and Affiliations

  • Ole J. Heilmann
    • 1
  • Eigil Praestgaard
    • 1
  1. 1.Department of Chemistry, H. C. Ørsted InstituteUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations