Advertisement

Journal of Chemical Ecology

, Volume 16, Issue 3, pp 981–991 | Cite as

Phytohormone ecology

Herbivory byThrips tabaci induces greater ethylene production in intact onions than mechanical damage alone
  • Deborah M. Kendall
  • Louis B. Bjostad
Article

Abstract

Herbivory byThrips tabaci affected production of the phytohormone ethylene from living onion foliage. Ethylene analysis was performed by gas chromatography on intact onion tissue. Thrips feeding damage and a crushed thrips extract stimulated significantly greater production of eihylene than could be explained by either one-time or semicontinuous mechanical damage alone, suggesting that ethylene-inducing cues may be transferred to the plant during feeding. This is the first demonstration of increased ethylene production from insect-infested intact plants. This study suggests that herbivores affect both the phytohormone physiology and secondary chemistry of living plants because ethylene has been shown to enhance production of defensive phytochemicals.

Key words

Onion thrips Thrips tabaci Thysanoptera onions Allium cepa ethylene herbivory plant-insect interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeles, F.B. 1973. Ethylene in Plant Biology. Academic Press, New York.Google Scholar
  2. Abeles, F.B., andRubinstein, B. 1964. Regulation of ethylene evolution and leaf abscission by auxin.Plant Physiol. 39:963–969.Google Scholar
  3. Adams, C.M., andBernays, E.A. 1978. The effect of combinations of deterrents on the feeding behavior ofLocusta migratoria.Entomol. Exp. Appl. 23:101–109.Google Scholar
  4. Albersheim, P., Darvill, A.G., McNEIL, M., Valent, B.S., Sharp, J.D., Nothnagel, E.A., Davis, K.R., Yamazaki, N., Gollin, D.J., York, W.S., Dudman, W.F., Darvill, J.E., andDell, A. 1983. Oligosaccharins: Naturally occurring carbohydrates with biological regulatory functions, pp. 293–312,in O. Ciferri and L. Dure III (eds.). Structure and Function of Plant Genomes. Plenum Press, New York.Google Scholar
  5. Anderson, J.D., Matoo, A.K., andLieberman, M. 1982. Induction of ethylene biosynthesis in tobacco leaf discs by cell wall digesting enzymes.Biochem. Biophys. Res. Commun. 107:588–596.Google Scholar
  6. Babiker, H.M., andPepper, I.L. 1984. Microbial production of ethylene in desert soils.Sool Biol. Biochem. 16:559–564.Google Scholar
  7. Berenbaum, M., andFeeny, P. 1981. Toxicity of angular furanocoumarins to swallowtail butterflies: Escalation in a coevolutionary arms race?Science 212:927–929.Google Scholar
  8. Boller, T. 1983. Regulation der Produktion von stress-ethylene und ihre bedeutung.Hohenheimer Arb. 129:167–188.Google Scholar
  9. Boller, T., andKende, H. 1980. Regulation of wound ethylene synthesis in plants.Nature 286:259–260.Google Scholar
  10. Broadway, R.M., Duffey, S.S., Pearce, G., andRyan, C.A. 1986. Plant proteinase inhibitors: A defense against herbivorous insects?Entomol. Exp. Appl. 41:33–38.Google Scholar
  11. Burg, S.P., andThimann, K.V. 1959. The physiology of ethylene formation in apples.Proc. Natl. Acad. Sci. U.S.A. 45:335–344.Google Scholar
  12. Chalutz, E. 1973. Ethylene-induced phenylalanine ammonia-lyase activity in carrot roots.Plant Physiol. 51:1033–1036.Google Scholar
  13. Crocker, W., Zimmerman, P.W., andHitchcock, A.E. 1932. Ethylene-induced epinasty of leaves and the relation of gravity to it.Contrib. Boyce Thompson Inst. 4:177–218.Google Scholar
  14. Dreyer, D.L., andJones, K.C. 1981. Feeding deterrency of flavonoids and related phenolics towardsSchizaphis graminum andMyzus persicae: Aphid feeding deterrents in wheat.Phytochemistry 20:2489–2493.Google Scholar
  15. Duffey, J.E., andPowell, R.D. 1979. Microbial induced ethylene synthesis as a possible factor of square abscission and stunting in cotton infested by cotton fleahopper.Ann. Entomol. Soc. Am. 72:599–601.Google Scholar
  16. Edwards, P.J., andWratten, S.D. 1983. Wound induced defenses in plants and their consequences for patterns of insect grazing.Oecologia 59:88–93.Google Scholar
  17. Esquerre-Tugaye, M.T.,Mazau, D.,Pelissier, B.,Roby, D., andToppan, A. 1984. Elicitors and ethylene trigger defense responses in plants, pp. 217–218,in Y. Fuchs and E. Chalutz (eds.). Ethylene, International Symposium. The Hague, Netherlands.Google Scholar
  18. Fenwick, G.R., andHanley, A.B. 1985. The genusAllium. Part 2.CRC Crit. Rev. Food Sci. Nutr. 22:273–377.Google Scholar
  19. Fowler, S.V., andMacgarvin, M. 1986. The effects of leaf damage on the performance of insect herbivores on birch,Betula pubescens.J. Anim. Ecol. 55:565–573.Google Scholar
  20. Fox, L.R. 1981. Defense and dynamics in plant-herbivore systems.Am. Zool. 21:853–864.Google Scholar
  21. Fraenkel, G.S. 1959. The raison d'être of secondary plant substances.Science 129:1466–1470.Google Scholar
  22. Green, T.R., andRyan, C.A. 1972. Wound-induced proteinase inhibitor in plant leaves: A possible defense mechanism against insects.Science 175:776–777.Google Scholar
  23. Grisham, M.P., Sterling, W.L., Powell, R.D., andMorgan, P.W. 1987. Characterization of the induction of stress ethylene synthesis in cotton caused by the cotton fleahopper (Hemiptera: Miridae) and its microorganisms.Ann. Entomol. Soc. Am. 80:411–416.Google Scholar
  24. Harborne, J.B. 1979. Flavonoid pigments, pp. 619–655,in G.A. Rosenthal and D.H. Janzen (eds.). Herbivores: Their Interaction with Secondary Plant Metabolites. Academic Press, New York.Google Scholar
  25. Herrmann, K. 1958. Uber die flavonole und phenole der Zwiebel (Allium cepa L.).Arch. Pharmacol. 291:238–247.Google Scholar
  26. Hyodo, H., andYang, S.F. 1971. Ethylene-enhanced synthesis of phenylalanine arnmonia-lyase in pea seedlings.Plant Physiol. 47:765–770.Google Scholar
  27. Isman, M.B., andRodriguez, E. 1983. Larval growth inhibitors from species ofParthenium (Asteraceae).Phytochemistry 22:2709–2713.Google Scholar
  28. Jackson, M.B., andCampbell, D.J. 1976. Waterlogging and petiole epinasty in tomato: The role of ethylene and low oxygen.New Phytol. 76:21–29.Google Scholar
  29. Jackson, M.B., andOsborne, D.J. 1970. Ethylene, the natural regulator of leaf abscission.Nature 225:1019–1022.Google Scholar
  30. Jermy, T. 1984. Evolution of insect/host plant relationships.Am. Nat. 124:609–630.Google Scholar
  31. Kappel, F., Proctor, J.T.A., andMurr, D.P. 1987. Effect of spotted tentiform leafminer injury on ethylene production and ACC content in apple leaves.Hortscience 22:469–471.Google Scholar
  32. Kimmerer, T.W., andKozlowski, T.T. 1982. Ethylene, ethane, acetaldehyde, and ethanol production by plants under stress.Plant Physiol. 69:840–847.Google Scholar
  33. Kloft, W., andEhrhardt, P. 1959. Zur Frage der Speichelinjektion ben Saugakt vonThrips tabaci Lind. (Thysanoptera, Terebrantia).Naturwissenschaften 46:586–587.Google Scholar
  34. Levy, D., andKedar, N. 1970. Effect on growth and bulb initiation in onion.Hortscience 5:80–82.Google Scholar
  35. Martin, W.R., Jr., Morgan, P.W., Sterling, W.L., andKenerley, C.M. 1988. Cotton fleahopper and associated microorganisms as components in the production of stress ethylene by cotton.Plant Physiol. 87:280–285.Google Scholar
  36. McMichael, B.L., Jordan, W.R., andPowell, R.D. 1972. An effect of water stress on ethylene production by intact cotton petioles.Plant Physiol. 49:658–660.Google Scholar
  37. Miles, P.W. 1968a. Insect secretions in plants.Annu. Rev. Phytopathol. 6:137–164.Google Scholar
  38. Miles, P.W. 1968b. Studies on the salivary physiology of plant-bugs: Experimental induction of galls.J. Insect Physiol. 14:97–106.Google Scholar
  39. Powell, R.D., andDuffey, J.E. 1978. Ethylene production and fleahopper damage in the cotton plant.Proc. Plant Growth Regul. Soc. Am. 5:148–151.Google Scholar
  40. Quartey, S.Q. 1982. Population dynamics of the cotton thrips,Thrips tabaci Lind., on onions. Ph.D. dissertation. Michigan State University, East Lansing.Google Scholar
  41. Roby, D., Toppan, A., andEsquerre-Tugaye, M.T. 1986. Cell surface in plant-microorganism interactions. VI. Elicitors of ethylene fromColletotrichum lagenarium trigger chitinase activity in melon plants.Plant Physiol. 81:228–233.Google Scholar
  42. Rosenthal, G.A., andJanzen, D.H. (eds.). 1979. Herbivores: Their Interaction with Secondary Plant Metabolites. Academic Press, New York.Google Scholar
  43. Ryan, C.A., Bishop, P.D., Graham, J.S., Broadway, R.M., andDuffey, S.S. 1986. Plant and fungal cell wall fragments activate expression of proteinase inhibitor genes for plant defense.J. Chem. Ecol. 12:1025–1036.Google Scholar
  44. Shain, L., andHillis, W.E. 1972. Ethylene production inPinus radiata in response toSirexamylostereum attack.Phytopathology 62:1407–1409.Google Scholar
  45. Stewart, J. 1974. Effects of ethylene and gibberellic acid on cellular growth and development in apical and subapical regions of etiolated pea seedlings.Plant Physiol. 54:1–5.Google Scholar
  46. Tong, C.B., Labavitch, J.M., andYang, S.F. 1986. The induction of ethylene production from pear cell culture by cell wall fragments.Plant Physiol. 81:929–930.Google Scholar
  47. Tronchet, J. 1971a. Les derives flavoniquesd'Allium cepa (oignons paille), nature, localisation et repartition dans le bulbe et les limbes foliaires au cours du developpement.Ann. Sci. Univ. Besancon, Bot. 10:18–22.Google Scholar
  48. Tronchet, J. 1971b. Localisation et repartition des derives flavoniques et des acides phenoliques dans les bulbes et les feuilles de varietes blanchesd'Allium cepa (Liliacees).Ann. Sci. Univ. Besancon, Bot. 10:23–28.Google Scholar
  49. Tronchet, J. 1971c. Effets de traumatismes sur l'equipement flavonoidique de limbes de varietes blanchesd'Allium cepa (Liliacees).Ann. Sci. Univ. Besancon, Bot. 10:29–33.Google Scholar
  50. Valiela, I., Koumjian, L., andSwain, T. 1979. Cinnamic acid inhibition of detritus feeding.Nature 280:55–57.Google Scholar
  51. Wien, H.C., andRoesingh, C. 1980. Ethyiene evolution by thrips infested cowpea provides a basis for thrips resistance screening with ethephon sprays.Nature 283:192–194.Google Scholar
  52. Williamson, C.E. 1950. Ethylene, a metabolic product of diseased or injured plants.Phytopathology 40:205–208.Google Scholar
  53. Yang, S.F., andPratt, H.K. 1978. The physiology of ethylene in wounded plant tissue, pp. 593–662,in G. Kahl (ed.). Biochemistry of Wounded Plant Tissues. Walter de Gruyter, Berlin.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Deborah M. Kendall
    • 1
  • Louis B. Bjostad
    • 2
  1. 1.Department of Biological SciencesFort Lewis CollegeDurango
  2. 2.Department of EntomologyColorado State UniversityFort Collins

Personalised recommendations