Skip to main content
Log in

Applicability of four recent models to the discharge behaviour of different phases of MnO2 in alkaline and acidic/neutral electrolytes

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Manganese dioxides belonging to different crystalline phases were discharged in 9 M KOH and 5 M NH4Cl+2 M ZnCl2 at a constant current of 1 mA 0.1 g. These phases were characterized by X-ray diffractometry and chemical analysis. Four different models were tried for their applicability to the discharge behaviour of these phases. Almost all the four models successfully predict the values of the oxyhydroxides in the first half of the reduction range 0<r<0.5, but fail to do so in the secon half i.e. 0.5<r<1. The only exception to this is the model (Model 2) of Maskell, Shaw and Tye. This model yields, by far, the best match with the experimental data in acidic/neutral electrolyte. In alkaline electrolyte, however, even this model fails to account satisfactorily for the observed potentials in the lower half of the reduction. This failure could perhaps be explained as due to the formation of a new phase at about MnO1.6 (r≃0.8). The cation vacancy model of Ruetschi predicts most of the physical properties rather well but the match of the theoretical potentials with the experimental values is poor, specially in the lower half.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Atlung and T. Jacobsen,Electrochim. Acta 26 (1981) 1447–1456.

    Google Scholar 

  2. W. C. Maskell, J. E. A. Shaw and F: L. Tye,ibid. 28 (1983) 225–230; 231–235.

    Google Scholar 

  3. F. L. Tye,ibid.,30 (1985) 17–23.

    Google Scholar 

  4. P. Ruetschi,J. Electrochem. Soc. 131 (1984) 2737–2744.

    Google Scholar 

  5. J. J. Coleman,Trans. Electrochem. Soc. 90 (1946) 545.

    Google Scholar 

  6. R. S. Johnson and W. C. Vosburgh,J. Electrochem. Soc. 100 (1953) 471.

    Google Scholar 

  7. A. B. Scott,ibid. 107 (1960) 941.

    Google Scholar 

  8. F. Kornfeil,ibid. 109 (1962) 349.

    Google Scholar 

  9. K. Neumann and E. V. Roda,Z. Electrochem. Ber. Bunsenges. Phys. Chem. 69 (1965) 347.

    Google Scholar 

  10. A. Kozawa and R. A. Powers,J. Electrochem. Soc. 113 (1966) 870.

    Google Scholar 

  11. Idem., Electrochem. Technol. 5 (1967) 535.

    Google Scholar 

  12. S. Atlung, Paper presented at the I.S.E. Meeting, Div. 6, Kelkheim, 1973.

  13. Idem., ‘MnO2 Symp. Proc. Cleveland. OH.’, (edited by A. Kozawa and R. R. Brood)1 (1975) 47.

    Google Scholar 

  14. F. L. Tye,Electrochim. Acta 21 (1976) 415.

    Google Scholar 

  15. W. C. Maskell, J. E. A. Shaw and F. L. Tye,J. Power Sources 8 (1982) 113.

    Google Scholar 

  16. Idem., J. Appl. Electrochem. 12 (1982) 101.

    Google Scholar 

  17. J. B. Fernandes, B. D. Desai and V. N. Kamat Dalal,Electrochim. Acta 28 (1983) 309–315.

    Google Scholar 

  18. R. M. McKenzie,Aust. J. Soil. Res. 8 (1970) 97.

    Google Scholar 

  19. R. Giovanoli, E. Stähli and W. Feitknecht,Helv. Chim. Acta 53 (1970) 453.

    Google Scholar 

  20. K. Takahashi, ‘Electrochemistry of Manganose Dioxide and Manganese Dioxide Batteries in Japan’, Vol. 1 & 2 (Vol. 2) (edited by S. Yoshizawa, K. Takahashï and A. Kozawa) (1971) p. 34.

    Google Scholar 

  21. D. M. Holten and F. L. Tye, MnO2 Symp. Proc. Tokyo. Jpn., Vol. 2 (edited by B. Schumm, Jr., H. M. Joseph and A. Kozawa) (1980) 244.

  22. T. Matsumura,ibid. MnO2 Symp. Proc. Tokyo. Jpn., Vol. 2 (edited by B. Schumm, Jr., H. M. Joseph and A. Kozawa) (1980) 596.

  23. B. D. Desai, R. A. S. Dhume and V. N. Kamat Dahl,J. Power Sources. (in press).

  24. J. B. Fernandes, B. D. Desai and V. N. Kamat Dalal,Electrochim. Acta 29 (1984) 181.

    Google Scholar 

  25. D. M. Holten, W. C. Maskell and F. L. Tye, Presented at 14th International Power Sources Symposium held at Brighton, (17–20 Sept., 1984) 1–25 (Pre-publication Text).

  26. Cited in Alkaline Storage Batteries, (edited by S. U. Falk and A. J. Salkind) John Wiley and Sons, Inc. (1969) 535.

  27. J. B. Fernandes, B. D. Desai and V. N. Kamat Dalal,J. Appl. Electrochem. 15 (1985) 358.

    Google Scholar 

  28. R. Giovanoli,Chimia 23 (1969) 472.

    Google Scholar 

  29. A. Kozawa, Proceedings of the 11th International Symposium 1978. ‘Power Sources 7’ (edited by J. Thomson) Academic Press, London (1979) p. 485.

    Google Scholar 

  30. P. M. de Wolff, J. W. Visser, R. Giovanoli and R. Brutsch,Chimia 32 (1978) 257.

    Google Scholar 

  31. A. Kozawa, ‘Manganese Dioxide Batteries’ Vol. I (edited by K. V. Kordesch), Marcel Dekker (1972) 429.

  32. R. Huber and J. Bauer,Electrochem. Technol. 5 (1967) 542.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desai, B.D., Dhume, R.A.S. & Kamat Dalal, V.N. Applicability of four recent models to the discharge behaviour of different phases of MnO2 in alkaline and acidic/neutral electrolytes. J Appl Electrochem 18, 62–74 (1988). https://doi.org/10.1007/BF01016206

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01016206

Keywords

Navigation