Theoretical and Mathematical Physics

, Volume 86, Issue 2, pp 121–130 | Cite as

Real non-Archimedean structure of spacetime

  • A. Yu. Khrennikov
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    V. S. Vladimirov and I. V. Volovich, Teor. Mat. Fiz.,59, 3 (1984).Google Scholar
  2. 2.
    I. V. Volovich, “Number theory as the ultimate physical theory,” Preprint CERN-TN. 4981/87, CERN, Geneva (1987); Class. Quant. Grav.,4, 83 (1987).Google Scholar
  3. 3.
    P. G. O. Freund and M. Olson, Phys. Lett. B,199, 186 (1987); Nucl. Phys. B,297, 86 (1988); P. G. O. Freund and E. Witten, Phys. Lett. B,199, 191 (1987); I. V. Volovich, Lett. Math. Phys.,16, 61 (1988); V. S. Vladimirov and I. V. Volovich, Commun. Math. Phys.,123, 659 (1989); P. H. Frampton and Y. Okada, Phys. Rev. Lett.,60, 484 (1988); B. Grossman, Phys. Lett. B,197, 101 (1987); I. Ya. Aref'eva, B. G. Dragovic, and I. V. Volovich, Phys. Lett. B,200, 512 (1988).Google Scholar
  4. 4.
    A. Yu. Khrennikov, Teor. Mat. Fiz.,83, 406 (1990); Dokl. Akad. Nauk SSSR,313, 325 (1990); Diff. Uravneniya,26, 1044 (1990); Usp. Mat. Nauk,45, 24 (1990).Google Scholar
  5. 5.
    Z. I. Borevich and I. R. Shafarevich, Number Theory, Third Edition [in Russian], Nauka, Moscow (1985); S. A. Lang, Algebra, Addison-Wesley (1965); I. M. Gel'fand, M. I. Graev, and I. I. Pyatetskii-Shapiro, Generalized Functions, Vol. 6, Representation Theory and Automorphic Functions, W. B. Saunders, Philadelphia (1969); V. S. Vladimirov, Usp. Mat. Nauk,43, 17 (1988); A. F. Monna, Analyse Non-Archimedienne, University Press, Berlin (1970).Google Scholar
  6. 6.
    Y. Morita, J. Fac. Sci. Univ. Tokyo,22, 255 (1975); B. H. Gross and N. Koblitz, Ann. Math.,109, 569 (1979).Google Scholar
  7. 7.
    N. P. Konopleva and V. N. Popov, Gauge Fields [in Russian], Atomizdat, Moscow (1980).Google Scholar
  8. 8.
    A. A. Slavnov and L. D. Faddeev, Gauge Fields, Introduction to Quantum Theory (Frontiers in Physics, Vol. 50), Reading, Mass. (1980); V. N. Popov, Path Integrals in Quantum Field Theory and Statistical Physics [in Russian], Atomizdat, Moscow (1976).Google Scholar
  9. 9.
    I. L. Martin, Proc. R. Soc. London, Ser. A,251, 536 (1959); F. A. Berezin, Introduction to Algebra and Analysis with Anticommuting Variables [in Russian], Moscow State University (1983); D. A. Leites, The Theory of Supermanifolds [in Russian], Petrozavodsk State University, Petrozavodsk (1983); Yu. I. Manin, Gauge Fields and Complex Geometry [in Russian], Nauka, Moscow (1987); B. Kostant, Lecture Notes in Math.,570, (1977).Google Scholar
  10. 10.
    I. V. Volovich, “A supermanifolds and fiber bundles,” Dokl. Akad. Nauk SSSR,269, 524 (1983); B. DeWitt, Supermanifolds, Cambridge University Press, Cambridge (1984); A. Rogers, J. Math. Phys.,21, 1352 (1980).Google Scholar
  11. 11.
    I. L. Gervais, Phys. Lett. B,201, 306 (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • A. Yu. Khrennikov

There are no affiliations available

Personalised recommendations