Theoretical and Mathematical Physics

, Volume 86, Issue 2, pp 121–130 | Cite as

Real non-Archimedean structure of spacetime

  • A. Yu. Khrennikov


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    V. S. Vladimirov and I. V. Volovich, Teor. Mat. Fiz.,59, 3 (1984).Google Scholar
  2. 2.
    I. V. Volovich, “Number theory as the ultimate physical theory,” Preprint CERN-TN. 4981/87, CERN, Geneva (1987); Class. Quant. Grav.,4, 83 (1987).Google Scholar
  3. 3.
    P. G. O. Freund and M. Olson, Phys. Lett. B,199, 186 (1987); Nucl. Phys. B,297, 86 (1988); P. G. O. Freund and E. Witten, Phys. Lett. B,199, 191 (1987); I. V. Volovich, Lett. Math. Phys.,16, 61 (1988); V. S. Vladimirov and I. V. Volovich, Commun. Math. Phys.,123, 659 (1989); P. H. Frampton and Y. Okada, Phys. Rev. Lett.,60, 484 (1988); B. Grossman, Phys. Lett. B,197, 101 (1987); I. Ya. Aref'eva, B. G. Dragovic, and I. V. Volovich, Phys. Lett. B,200, 512 (1988).Google Scholar
  4. 4.
    A. Yu. Khrennikov, Teor. Mat. Fiz.,83, 406 (1990); Dokl. Akad. Nauk SSSR,313, 325 (1990); Diff. Uravneniya,26, 1044 (1990); Usp. Mat. Nauk,45, 24 (1990).Google Scholar
  5. 5.
    Z. I. Borevich and I. R. Shafarevich, Number Theory, Third Edition [in Russian], Nauka, Moscow (1985); S. A. Lang, Algebra, Addison-Wesley (1965); I. M. Gel'fand, M. I. Graev, and I. I. Pyatetskii-Shapiro, Generalized Functions, Vol. 6, Representation Theory and Automorphic Functions, W. B. Saunders, Philadelphia (1969); V. S. Vladimirov, Usp. Mat. Nauk,43, 17 (1988); A. F. Monna, Analyse Non-Archimedienne, University Press, Berlin (1970).Google Scholar
  6. 6.
    Y. Morita, J. Fac. Sci. Univ. Tokyo,22, 255 (1975); B. H. Gross and N. Koblitz, Ann. Math.,109, 569 (1979).Google Scholar
  7. 7.
    N. P. Konopleva and V. N. Popov, Gauge Fields [in Russian], Atomizdat, Moscow (1980).Google Scholar
  8. 8.
    A. A. Slavnov and L. D. Faddeev, Gauge Fields, Introduction to Quantum Theory (Frontiers in Physics, Vol. 50), Reading, Mass. (1980); V. N. Popov, Path Integrals in Quantum Field Theory and Statistical Physics [in Russian], Atomizdat, Moscow (1976).Google Scholar
  9. 9.
    I. L. Martin, Proc. R. Soc. London, Ser. A,251, 536 (1959); F. A. Berezin, Introduction to Algebra and Analysis with Anticommuting Variables [in Russian], Moscow State University (1983); D. A. Leites, The Theory of Supermanifolds [in Russian], Petrozavodsk State University, Petrozavodsk (1983); Yu. I. Manin, Gauge Fields and Complex Geometry [in Russian], Nauka, Moscow (1987); B. Kostant, Lecture Notes in Math.,570, (1977).Google Scholar
  10. 10.
    I. V. Volovich, “A supermanifolds and fiber bundles,” Dokl. Akad. Nauk SSSR,269, 524 (1983); B. DeWitt, Supermanifolds, Cambridge University Press, Cambridge (1984); A. Rogers, J. Math. Phys.,21, 1352 (1980).Google Scholar
  11. 11.
    I. L. Gervais, Phys. Lett. B,201, 306 (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • A. Yu. Khrennikov

There are no affiliations available

Personalised recommendations