Plasma Chemistry and Plasma Processing

, Volume 8, Issue 2, pp 225–246 | Cite as

Transfer of F in the reaction of SF6 with SOF4: Implications for SOF4 production in corona discharges

  • R. J. Van Brunt
  • L. W. Sieck
  • I. Sauers
  • M. C. Siddagangappa


The temperature (T) and electric field-to-gas pressure (E/P) dependences of the rate coefficientk for the reaction SF6+SOF4→SOF5+SF5 have been measured. ForT<270 K,k approaches a constant of 2.1×10−9 cm3/s, and for 433>T>270 K,k decreases withT according tok (cm3/s)=0.124 exp [−3.3 lnT(K)]. ForE/P<V/cm·torr,k has a constant value of about 2.5×10−10 cm3/s, and for 130 V/cm·torr>E/P>60 V/cm·torr, the rate is approximately given byk (cm3/s)∼7.0×10−10 exp (−0.022E/P). The measured rate coefficient is used to estimate the influence of this reaction on SOF4 production from negative, point-plane, glow-type corona discharges in gas mixtures containing SF6 and at least trace amounts of O2 and H2O. A chemical kinetics model of the ion-drift region in the discharge gap is used to fit experimental data on SOF4 yields assuming that the SF6+SOF4 reaction is the predominant SOF4 loss mechanism. It is found that the contribution of this reaction to SOF4 destruction falls considerably below the estimated maximum effect assuming that SF6 is the predominant charge carrier which reacts only with SOF4. The results of this analysis suggest that SF6 is efficiently deactivated by other reactions, and the influence of SF6+SOF4 on SOF4 production is not necessarily more significant than that of other slower secondary processes such as gas-phase hydrolysis.

Key Words

Corona discharges chemical reactions rate coefficients experimental 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Gutbier. Phys. Verh.17, 163 (1966).Google Scholar
  2. 2.
    R. d'Agostino and D. L. Flamm,J. Appl. Phys. 52, 162 (1981).Google Scholar
  3. 3.
    H. J. Emeleus and B. Tittle,J. Chem. Soc., 1644 (1963).Google Scholar
  4. 4.
    G. Bruno, P. Capezzuto, and F. Cramarossa,J. Flour. Chem. 14, 115 (1979).Google Scholar
  5. 5.
    R. J. Van Brunt,J. Res. Natl. Bur. Stand. 90, 229 (1985).Google Scholar
  6. 6.
    W. Becher and J. Massonne,Elektrotech. Z. Ausg. A 91, 605 (1970).Google Scholar
  7. 7.
    C. Boudene, J. Cluet, G. Keib, and G. Wind,Rev. Gen. Electr. No. Special, 45 (1974).Google Scholar
  8. 8.
    I. Sauers, H. W. Ellis, and L. G. Christophorou,IEEE Trans. Electr. Insul. EI-21, 111 (1986).Google Scholar
  9. 9.
    I. Sauers,Plasma Chem. Plasma Process. 8, 247 (1988).Google Scholar
  10. 10.
    M. C. Siddagangappa and R. J. Van Brunt,Proc. 8th Int. Conf. on Gas Discharges and Their Applications, Leeds University Press, London (1985), pp. 247–250.Google Scholar
  11. 11.
    M. C. Siddagangappa, R. J. Van Brunt, and A. V. Phelps,Proc. 1986 IEEE Int. Symp. on Electr. Insul., IEEE, New York (1986), pp. 225–229.Google Scholar
  12. 12.
    I. Sauers,IEEE Trans. Electr. Insul. EI-21, 105 (1986).Google Scholar
  13. 13.
    R. J. Van Brunt and I. Sauers,J. Chem. Phys. 85, 4377 (1986).Google Scholar
  14. 14.
    R. J. Van Brunt and M. C. Siddagangappa,Plasma Chem. Plasma Process. 8, 207 (1988).Google Scholar
  15. 15.
    I. Sauers, L. W. Sieck, R. J. Van Brunt, and M. C. Siddagangappa, Proc. 1986 Gaseous Electronics Conf.,Bull. Am. Phys. Soc. 32, 1169 (1987).Google Scholar
  16. 16.
    L. W. Sieck and M. Meot-Ner,J. Phys. Chem. 88, 5324 (1984).Google Scholar
  17. 17.
    L. W. Sieck,J. Phys. Chem. 89, 5552 (1985).Google Scholar
  18. 18.
    L. E. Kline, D. K. Davies, C. L. Chen, and P. J. Chantry,J. Appl. Phys. 50, 6789 (1979); R. K. Asundi and J. D. Craggs,Proc. Phys. Soc. 83, 611 (1964); A. Chutjian,J. Phys. Chem. 86, 3518 (1982);Phys. Rev. Lett. 46, 1511 (1981).Google Scholar
  19. 19.
    L. W. Sieck and R. J. Van BruntJ. Phys. Chem. 92, 708 (1988).Google Scholar
  20. 20.
    R. Morrow,IEEE Trans. Plasma Sci. PS-14, 234 (1986); K. P. Brand and H. Jungblut,J. Chem. Phys. 78, 1999 (1983); P. L. Patterson,J. Chem. Phys. 56, 3943 (1972).Google Scholar
  21. 21.
    H. E. Revercomb and E. A. Mason,Anal. Chem. 47, 970 (1975).Google Scholar
  22. 22.
    M. P. Langevin,Ann. Chim. Phys. 5, 245 (1905).Google Scholar
  23. 23.
    I. C. Plumb and K. R. Ryan,Plasma Chem. Plasma Process. 6, 247 (1986).Google Scholar
  24. 24.
    J. T. Herron,IEEE Trans. Electr. Insul. EI-22, 523 (1987).Google Scholar
  25. 25.
    R. J. Van Brunt, J. T. Herron, and C. Fenimore, inGaseous Dielectrics V, Proc. 5th Int. Symp. on Gaseous Dielectrics, L. G. Christophorou, ed., Pergamon Press, New York (1987), pp. 163–173.Google Scholar
  26. 26.
    T. F. Magnera and P. Kebarle inIonic Processes in the Gas Phase, M. A. Almoster Ferreira, ed., D. Reidel, Boston (1984), pp. 135–157.Google Scholar
  27. 27.
    M. Meot-Ner and F. H. Field,J. Chem. Phys. 64, 277 (1976).Google Scholar
  28. 28.
    D. K. Sen Sharma and P. Kebarle,J. Am. Chem. Soc. 104, 19 (1982).Google Scholar
  29. 29.
    T. Su and M. T. Bowers inGas-Phase Ion Chemistry, M. T. Bowers, ed., Academic Press, New York (1979), pp. 1–44.Google Scholar
  30. 30.
    W. Lindinger, D. L. Albritton, and F. C. Fehsenfeld, cited in E. E. Ferguson,Int. J. Mass-Spectrom. Ion Phys. 19, 53 (1976).Google Scholar
  31. 31.
    L. W. Sieck, J. Phys. Chem.90, 6684 (1986).Google Scholar
  32. 32.
    L. M. Babcock and G. E. Streit,J. Chem. Phys. 75, 3864 (1981).Google Scholar
  33. 33.
    M. K. Murphy and J. L. Beauchamp,J. Am. Chem. Soc. 99, 4992 (1977).Google Scholar
  34. 34.
    I. Sauers, J. L. Adock, L. G. Christophorou, and H. W. Ellis,J. Chem. Phys. 83, 2618 (1985).Google Scholar
  35. 35.
    J. W. Larson and T. B. McMahon,J. Am. Chem. Soc. 107, 766 (1985).Google Scholar
  36. 36.
    I. Sauers, Proc. 1987 Gaseous Electronics Conf.,Bull. Am. Phys. Soc. 33, 135 (1988).Google Scholar
  37. 37.
    M. J. Frisch, J. E. Del Bene, J. S. Binkley, and H. F. Schaefer,J. Chem. Phys. 84, 2279 (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • R. J. Van Brunt
    • 1
  • L. W. Sieck
    • 1
  • I. Sauers
    • 2
  • M. C. Siddagangappa
    • 3
  1. 1.National Bureau of StandardsGaithersburg
  2. 2.Oak Ridge National LaboratoryOak Ridge
  3. 3.Indian Institute of ScienceBangaloreIndia

Personalised recommendations