A. P. George, “Effect of Cathode Temperature on Erosion Rate in a Schoen-Herr Type Arc Heater Operated on Argon,” 7th International Symposium on Plasma Chemistry, Eindhoven, The Netherlands, July 1–5, Vol. 1, pp. 207–212 (1985).
E. L. Murphy and R. H. Good, “Thermionic Emission, Field Emission, and the Transition Region,”Phys. Rev.
102, 1465–1472 (1956).
Google Scholar
G. Ecker, “Electrode Components of the Arc Discharge,”Ergebn. Exakt. Naturw.
33, 1–104 (1955).
Google Scholar
F. L. Jones and E. T. Perrelle, “Field Emission of Electrons in Discharges,”Proc. R. Soc. London A,216, 267–279 (1952).
Google Scholar
L. W. Swanson, L. C. Crouser,and F. M. Charbonnier, “Energy Exchanges Attending Field Electron Emission,”Phys. Rev.
151, 327–340 (1966).
Google Scholar
P. W. Neurath and T. W. Gibbs, “Arc Cathode Emission Mechanism at High Currents and Pressures,”J. Appl. Phys.
34, 277–283 (1963).
Google Scholar
A. E. Guile and A. H. Hithcock, “Effect of Transverse Magnetic Field on Erosion Rate of Cathodes of Rotating Arcs,”IEE Proc.
128, 117–122 (1981).
Google Scholar
G. A. Farrall, M. Owens, and F. G. Hudda, “A Scanning Electron Microscope Study of Electron Emission and Topography of Surfaces Subjected to Arcing at High Current in Vacuum,”IEEE PES winter meeting New York, C75, pp 102–109, January 1975.
G. A. Farrall, M. Owens, and F. G. Hudda, “Further Studies of Electron Areas on Electropolished Copper Surfaces in Vacuum,”J. Appl. Phys.
46, 610–617 (1975).
Google Scholar
C. S. Athwal, K. H. Bayliss, R. Calder, and R. V. Latham, “Field-Induced Electron Emission from Artificially Produced Carbon Sites on Broad Area Copper and Niobium Electrodes,”IEEE Trans. Plasma Sci.
PS-13, 226–229 (1985).
Google Scholar
P. Niedermann, N. Sankarraman, R. J. Noer, and O. Fischer, “Field Emission from Broad Area Niobium Cathodes: Effects of High Temperature Treatment,”J. Appl. Phys.,59, 892–901 (1986).
Google Scholar
D. R. Porto and C. W. Kimblin, “Experimental Observations of Cathode Spot Surface Phenomena in the Transition from a Vacuum Metal Vapor Arc to a Nitrogen Arc,”J. Appl. Phys.
53, 4740–4749 (1982).
Google Scholar
R. J. Noer, P. Niedermann, N. Sankarramann, and O. Fischer, “Electron Field Emission from Intentionally Introduced Particles on Extended Niobium Surfaces,”J. Appl. Phys.
59, 3851–3860 (1986).
Google Scholar
A. H. Hithcock and A. E. Guile, “Effect of Copper Oxide Thickness on the Number and Size of Arc-Cathode Emitting Sites,”IEE Proc.
124, 148–152 (1977).
Google Scholar
A. E. Guile, “Erosion of Non-Refractory Cathodes in Arc Plasma Devices,”Proc. 4th International Symposium on Plasma Chem., Zurich, Vol. 1, pp. 305–310 (1979).
Google Scholar
R. N. Szente, R. J. Munz, and M. G. Drouet, “Effect of Low Concentrations of a Diatomic Gas in Argon on Erosion on Copper Cathodes in a Magnetically Rotated Arc,”Plasma Chem. Plasma Process.
7, 349–364 (1987).
Google Scholar
R. N. Szente, R. J. Munz, and M. G. Drouet, “Effect of the Arc Velocity on the Cathode Erosion Rate in Argon-Nitrogen Mixtures,”J. Phys. D: Appl. Phys.,20, 754–756 (1987).
Google Scholar
L. Cheng znd J. Xie, “Motion of Magnetically Driven Arcs on Oxidized Electrodes,”IEEE Trans. CHMT-5, No. 1, pp. 86–89 (1982).
Google Scholar
A. J. Szadkowski, A. Kalnitsky, K. B. Ma, and S. Zukotynski, “Implication of the Change in Work Function of Chromium by the Presence of Hydrogen on the Properties of Electrical Contract between Chromium and Hydrogenated Amorphous Silicon,”J. Appl. Phys.
53, 557–558 (1982).
Google Scholar
H. Gerischer, D. B. Kolb, and M. Przasnyski, “Chemisorption of Metal Atoms on Metal Surfaces in Correlation to Work Function Differences,”Surf. Sci.
43, 662–666 (1974).
Google Scholar
R. H. Good and E. W. Muller, “Field Emission,”Encyclopedia of Physics, Vol XXI, pp. 176–231 (1957).
Google Scholar
V. I. Rakovskii, “Cathode Emission Mechanism in an Arc Discharge,”Sov. Phys. Tech. Phys.
10, 1707–1709 (1966).
Google Scholar
F. K. Schulte, “A Theory of Thin Metal Films: Electrondensity, Potentials and Work Function,”Surf. Sci.
55, 427–444 (1976).
Google Scholar