Journal of Statistical Physics

, Volume 36, Issue 1–2, pp 81–87 | Cite as

A remark on the hydrodynamics of the zero-range processes

  • A. De Masi
  • P. Ferrari


The nonequilibrium stationary hydrodynamical properties of the symmetric nearest neighbor zero-range processes are studied: local equilibrium and Fourier's law are proven to hold, and the bulk diffusion coefficient and the equal time covariance of the limiting nonequilibrium stationary density fluctuations field are computed. The result fits with those already known and confirms some conjectures derived from a time-dependent macroscopic analysis. The very simple proof is based on a result already published but may be not so well known in this context.

Key words

Hydrodynamical behavior of microscopic systems stochastic dynamics zero range processes local equilibrium Fourier's law 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Andjel, Invariant measures for the zero range process,Ann. Prob. 10(3):525–547 (1982).Google Scholar
  2. 2.
    T. Brox and H. Rost, Equilibrium fluctuations of stochastic particle systems: The role of conserved quantities, submitted toAnn. Prob. 1984.Google Scholar
  3. 3.
    A. De Masi, N. Ianiro, A. Pellegrinotti, and E. Presutti, A survey of the hydrodynamical behavior of many particle systems, to appear inStudies of Statistical Mechanics, Vol. II (North-Holland, Amsterdam, 1984).Google Scholar
  4. 4.
    A. De Masi, P. Ferrari, N. Ianiro, and E. Presutti, Small deviations from local equilibrium for a process which exhibits hydrodynamical behavior. II.,J. Stat. Phys. 29:81 (1982).Google Scholar
  5. 5.
    P. Ferrari, E. Presutti, and M. E. Vares, Hydrodynamics of a zero range model, preprint, Roma, 1984.Google Scholar
  6. 6.
    R. Holley and D. W. Stroock, Generalized Ornestein-Uhlenbeck processes and infinite branching Brownian motions, Kioto Univ. Research Inst. for Math. Sciences Publications A 14 741 (1978).Google Scholar
  7. 7.
    R. Jackson, Job-shop-like queueing system,Management Sci. 10:131, 142 (1963).Google Scholar
  8. 8.
    T. Liggett, The stochastic evolution of infinite systems of interacting particles,Lecture Notes in Mathematics, No. 598 (Springer, New York, 1976), pp. 188, 248.Google Scholar
  9. 9.
    C. B. Morrey, On the derivation of the equation of hydrodynamics from statistical mechanics,Commun. Pure Appl. Math. 8:279 (1965).Google Scholar
  10. 10.
    M. G. Murmann, On the derivation of hydrodynamics from molecular dynamics, preprint, Universität Heidelberg (1983).Google Scholar
  11. 11.
    F. Spitzer, Interaction of Markov processes,Adv. Math. 5:246–290 (1970).Google Scholar
  12. 12.
    H. Spohn, preprint (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • A. De Masi
    • 1
  • P. Ferrari
    • 2
  1. 1.Dipartimento di MatematicaUniversita dell'AquilaL'AquilaItaly
  2. 2.Instituto de Matematica e EstatisticaUniv. de São PauloSão PauloBrasil

Personalised recommendations