Journal of Statistical Physics

, Volume 59, Issue 1–2, pp 195–220 | Cite as

A fixed-point equation for the high-temperature phase of discrete lattice spin systems

  • Tom Kennedy
Articles

Abstract

A fixed-point equation on an infinite-dimensional space is proposed as an alternative to the usual definition of the infinite-volume limit in discrete lattice spin systems in the high-temperature phase. It is argued heuristically that the free energy and correlation functions one obtains by solving this equation agree with the usual definitions of these quantities. A theorem is then proved that says that if a certain finite-volume condition is satisfied, then this fixed-point equation has a solution and the resulting free energy is analytic in the parameters in the Hamiltonian. For particular values of the temperature this finite-volume condition may be checked with the help of a computer. The two-dimensional Ising model is considered as a test case, and it is shown that the finite-volume condition is satisfied forβ⩽0.77βcritical.

Key words

Finite volume condition high temperature phase lattice spin system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Rigorous results on valence-bond ground states in antiferromagnets,Phys. Rev. Lett. 59:799–802 (1987); Valence-bond ground states in isotropic quantum antiferromagnets,Commun. Math. Phys. 115:477–528 (1988).Google Scholar
  2. 2.
    A. M. Aizenman, Rigorous studies of critical behavior I and II, inApplications of Field Theory in Statistical Mechanics, L. Garrido, ed. (Springer-Verlag, 1984), inStatistical Physics and Dynamical Systems: Rigorous Results, D. Szesz and E. Retz, eds. (Birkhauser, 1984);Commun. Math. Phys. 86:1 (1982).Google Scholar
  3. 3.
    D. P. Arovas, A. Auerbach, and F. D. M. Haldane, Extended Heisenberg models of antiferromagnetism: Analogies to the fractional quantum Hall effect,Phys. Rev. Lett. 60:531–534 (1988).Google Scholar
  4. 4.
    K. Decker, A. Hasenfratz, and P. Hasenfratz, Singular renormalization group transformations and first order phase transitions (II),Nucl. Phys. B 295:21–35 (1988).Google Scholar
  5. 5.
    R. L. Dobrushin and S. B. Shlosman, Completely analytic Gibbs fields, inStatistical Physics and Dynamical Systems (Birkhauser, 1985); Constructive criterion for the uniqueness of Gibbs field, inStatistical Physics and Dynamical Systems (Birkhauser, 1985); Completely analytical interactions: Constructive description,J. Stat. Phys. 46:983 (1987).Google Scholar
  6. 6.
    R. L. Dobrushin, J. Kolafa, and S. B. Shlosman, Phase diagram of the two-dimensional Ising antiferromagnet,Commun. Math. Phys. 102:89 (1985).Google Scholar
  7. 7.
    T. C. Dorlas and A. C. D. van Enter, Non-Gibbsian limit for large block majority-spin transformations,J. Stat. Phys. 55:171–182 (1989).Google Scholar
  8. 8.
    R. B. Griffiths and P. A. Pearce, Position-space renormalization-group transformations: Some proofs and some problems,Phys. Rev. Lett. 41:917–920 (1978); Mathematical properties of position-space renormalization-group transformations,J. Stat. Phys. 20:499–545 (1979).Google Scholar
  9. 9.
    R. B. Griffiths, Mathematical properties of renormalization group transformations,Physica 106A:59–69 (1981).Google Scholar
  10. 10.
    A. Hasenfratz and P. Hasenfratz, Singular renormalization group transformations and first order phase transitions (I),Nucl. Phys. B 295:1–20 (1988).Google Scholar
  11. 11.
    T. Kennedy, E. H. Lieb, and H. Tasaki, A two dimensional isotropic quantum antiferromagnet with unique disordered ground state,J. Stat. Phys. 53:383–415 (1988).Google Scholar
  12. 12.
    Th. Niemeijer and M. J. van Leeuwen, Renormalization theory for Ising-like spin systems, inPhase Transitions and Critical Phenomena, Vol. 6, C. Domb and M. S. Green, eds. (Academic Press, 1976).Google Scholar
  13. 13.
    B. Simon, Correlation inequalities and the decay of correlations in ferromagnets,Commun. Math. Phys. 77:111 (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Tom Kennedy
    • 1
  1. 1.Department of MathematicsUniversity of ArizonaTucson

Personalised recommendations