Advertisement

Journal of Statistical Physics

, Volume 59, Issue 1–2, pp 1–9 | Cite as

Critical exponent for the loop erased self-avoiding walk by Monte Carlo methods

  • A. J. Guttmann
  • R. J. Bursill
Articles

Abstract

A Monte Carlo simulation was performed for loop-erased self-avoiding walks (LESAW) to ascertain the exponentv for the Z2 and Z3 lattices. The estimated values were 2v=1.600±0.006 in two dimensions and 2v=1.232±0.008 in three dimensions, leading to the conjecturev=4/5 for the two-dimensional LESAW. These results add to existing evidence that the loop-erased self-avoiding walks are not in the same universality class as self-avoiding walks.

Key words

Loop-erased SAWS Monte Carlo critical exponent universality class critical behavior two dimensional three dimensional 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. Hammersley,Oxford Q. J. Math. 12(2):250–256 (1961).Google Scholar
  2. 2.
    J. M. Hammersley and D. J. A. Welsh,Oxford Q. J. Math. 13(2):108–110 (1962).Google Scholar
  3. 3.
    D. Brydges and T. Spencer,Commun. Math. Phys. 97:125–148 (1985).Google Scholar
  4. 4.
    G. Slade,Commun. Math. Phys. 110:661 (1987).Google Scholar
  5. 5.
    G. Slade,J. Phys. A: Math. Gen. 21:L417 (1988).Google Scholar
  6. 6.
    G. Slade,Ann. Prob. 17:91 (1989).Google Scholar
  7. 7.
    C. Domb and G. S. Joyce,J. Phys. C: Sol. State Phys. 5:956–976 (1972).Google Scholar
  8. 8.
    B. Nienhuis,Phys. Rev. Lett. 49:1062–1065 (1982).Google Scholar
  9. 9.
    B. Nienhuis,J. Stat. Phys. 34:731–761 (1984).Google Scholar
  10. 10.
    P. J. Flory,Statistical Mechanics of Chain Molecules (Wiley, New York, 1969).Google Scholar
  11. 11.
    A. J. Guttmann,J. Phys. A: Math. Gen. 20:1839–1854 (1987).Google Scholar
  12. 12.
    A. J. Guttmann,J. Phys. A: Math. Gen. 22 (1989), to appear.Google Scholar
  13. 13.
    J. C. Le Guillou and J. Zinn-Justin,Phys. Rev. B 21:3976–3998 (1980).Google Scholar
  14. 14.
    N. Madras and A. D. Sokal,J. Stat. Phys. 50:109–186 (1988).Google Scholar
  15. 15.
    A. J. Guttmann,J. Phys. A: Math. Gen. 14:233–239 (1981).Google Scholar
  16. 16.
    M. E. Fisher and M. F. Sykes,Phys. Rev. 114:45–58 (1959).Google Scholar
  17. 17.
    D. Klein,J. Stat. Phys. 23:561–586 (1980).Google Scholar
  18. 18.
    G. F. Lawler,Duke Math J. 47:655–694 (1980).Google Scholar
  19. 19.
    J. W. Lyklema and C. Evertsz,J. Phys. A: Math. Gen. 19:L895–900 (1986).Google Scholar
  20. 20.
    G. F. Lawler,J. Phys. A: Math. Gen. 20:4565–4568 (1987).Google Scholar
  21. 21.
    G. F. Lawler,Duke Math J. 53:249–269 (1986).Google Scholar
  22. 22.
    G. F. Lawler,J. Stat. Phys. 50:91–108 (1988).Google Scholar
  23. 23.
    C. Domb and F. T. Hioe,J. Chem. Phys. 51:1915–1919 (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • A. J. Guttmann
    • 1
  • R. J. Bursill
    • 1
  1. 1.Department of MathematicsUniversity of MelbourneParkvilleAustralia

Personalised recommendations