Fluid Dynamics

, Volume 10, Issue 5, pp 745–750 | Cite as

Convective motion concentration at the boundaries of a horizontal fluid layer with inhomogeneous unstable temperature gradient along the height

  • A. V. Getling


Temperature Gradient Fluid Layer Convective Motion Horizontal Fluid Layer Unstable Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. Pellew and R. V. Southwell, “On maintained convective motion in a fluid heated from below,∝ Proc.Roy. Soc., Ser. A,176, No. 966 (1940).Google Scholar
  2. 2.
    V. N. Gribov and L. É. Gurevich, “On the stability theory of a layer subjected to a superadiabatic temperature gradient in a gravity field,∝ Zh. Éksp. Teor. Fiz.,31, No. 5 (1956).Google Scholar
  3. 3.
    S. Musman, “Penetrative convection,∝ J. Fluid Mech.,31, No. 2 (1968).Google Scholar
  4. 4.
    A. J. Faller and R. Kaylor, “Numerical study of penetrative convective instabilities,∝ J. Geophys. Res.,75, No. 3 (1970).Google Scholar
  5. 5.
    R. M. Goody, “The influence of radiative transfer on cellular convection,∝ J. Fluid Mech.,1, No. 4 (1956).Google Scholar
  6. 6.
    E. M. Sparrow, R. J. Goldstein, and V. K. Jonsson, “Thermal instability in a horizontal fluid layer: effect of boundary conditions and nonlinear temperature profile,∝ J. Fluid Mech.,18, No. 4 (1964).Google Scholar
  7. 7.
    S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford (1961).Google Scholar
  8. 8.
    R. J. Schmidt and O. A. Saunders, “On the motion of a fluid heated from below,∝ Proc. Roy. Soc. London, Ser. A,165, No. 921 (1938).Google Scholar
  9. 9.
    P. L. Silveston, “W→medurchgang in waagerechten Flüssigkeitsschichten,∝ Forsch. Geb. Ing. Wes.,24, Nos. 1, 2 (1958).Google Scholar
  10. 10.
    M. M. Chen and J. A. Whitehead, “Evolution of two-dimensional periodic Rayleigh convections cells of arbitrary wave numbers,∝ J. Fluid Mech.,31, No. 1 (1968).Google Scholar
  11. 11.
    G. B. Schubauer and H. K. Skramstad, “Laminar boundary-layer oscillations and stability of laminar flow,∝ J. Aeronaut. Sci.,14, No. 2 (1947).Google Scholar
  12. 12.
    H. Sato, “An experimental study of nonlinear interaction of velocity fluctuations in the transition region of a two-dimensional wake,∝ J. Fluid Mech.,44, No. 4 (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • A. V. Getling
    • 1
  1. 1.Moscow State University Institute of Nuclear PhysicsMoscow

Personalised recommendations