Skip to main content
Log in

The velocity correlation function for the Lorentz gas

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The results of variational solutions of the repeated ring and self-consistent repeated ring equations for the two-and three-dimensional overlapping Lorentz gas (LG), as formulated in a previous report, are presented. Calculations of the full velocity correlation function (VCF) for the 2D LG, including long-time tails, are compared with those from molecular dynamics. The trial functions chosen lead to predictions for the long-time tails that improve as the density of the scatterers is increased. At a value of 0.24 forρ* (=ρσ 2, whereρ is the density and σ the radius of scatterers), the self-consistent amplitudes of the long-time tail are within 40% of the molecular dynamics. A limited number of 3D results for the short-time behavior of the repeated ring VCF are presented. The 3D solutions agree with the molecular dynamics to within 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. G. Cole and T. Keyes,J. Stat. Phys., this volume, preceding paper.

  2. J. R. Dorfman and M. H. Ernst,Physica 61:157 (1972); J. R. Dorfman, inFundamental Problems in Statistical Mechanics, Vol. 3, E. G. D. Cohen, ed. (North-Holland, Amsterdam, 1975).

    Google Scholar 

  3. S. W. Haan and R. Zwanzig,J. Phys. A 10:1547 (1977); J. Kertesy,J. Phys. (Paris) 42:L393 (1981).

    Google Scholar 

  4. A. Masters and T. Keyes,Phys. Rev. A 26:2129 (1982);25:1010 (1982).

    Google Scholar 

  5. A. Weijland and J. M. J. van Leeuwen,Physica 38:35 (1968); J. M. J. van Leeuwen,Physica 36:457 (1969); M. H. Ernst and A. Weijland,Phys. Lett. 34A:39 (1971); T. Keyes and J. Mercer,Physica 95A:473 (1979).

    Google Scholar 

  6. W. Gotze, E. Leutheusser, and S. Yip,Phys. Rev. A 23:2634 (1981);24:1008 (1981);25:533 (1982).

    Google Scholar 

  7. A. J. Masters, Ph. D. thesis, University of Cambridge (1980), unpublished.

  8. M. H. Ernst, J. Machta, J. R. Dorfman, and H. van Beijeren,J. Stat. Phys. 34:477 (1984).

    Google Scholar 

  9. J. Machta, M. H. Ernst, H. van Beijeren, and J. R. Dorfman,J. Stat. Phys. 35:413 (1984).

    Google Scholar 

  10. B. J. Alder and W. E. Alley,Physica 121A:523 (1983); B. J. Alder and W. E. Alley,J. Stat. Phys. 19:341 (1978); W. E. Alley, Ph.D. thesis, University of California, Davis (1979), unpublished.

    Google Scholar 

  11. C. Cercignani,Theory and Application of the Boltzmann Equation (Elsevier, New York, 1975).

    Google Scholar 

  12. C. Cercignani,J. Stat. Phys. 1:297 (1968).

    Google Scholar 

  13. M. H. Ernst, J. R. Dorfman, W. R. Hoegy, and J. M. J. van Leeuwen,Physica 45:127 (1968).

    Google Scholar 

  14. R. G. Cole, D. R. Evans, and D. K. Hoffman,J. Chem. Phys. 82:2061 (1985).

    Google Scholar 

  15. J. A. McLennan,Phys. Fluids 8:1580 (1965).

    Google Scholar 

  16. P. M. Morse and H. Feshbach,Methods of Theoretical Physics, I and II (McGraw-Hill, New York, 1953).

    Google Scholar 

  17. C. Bruin,Physica 72:261 (1974).

    Google Scholar 

  18. R. G. Cole, V. Protopopescu, and T. Keyes,J. Chem. Phys. 83:2384 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cole, R.G., Keyes, T. The velocity correlation function for the Lorentz gas. J Stat Phys 51, 275–289 (1988). https://doi.org/10.1007/BF01015331

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01015331

Key words

Navigation