Journal of Statistical Physics

, Volume 51, Issue 1–2, pp 195–203 | Cite as

Results from the Holsztynski-Slawny reduction method for ferromagnetic Ising models

  • James L. Monroe


We establish a variety of results using the Holsztynski-Slawny reduction method to study various ferromagnetic, Ising spin systems. The results range from a new proof of the lack of a first-order phase transition for certain infinite range, pair interaction, one-dimensional systems to a study of certain three-dimensional systems having many-body interactions.

Key words

Ising spin system ferromagnetic phase transition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Slawny,Commun. Math. Phys. 46:75 (1976).Google Scholar
  2. 2.
    W. Holsztynski and J. Slawny,Lett. Nuovo Cimento 13:534 (1975).Google Scholar
  3. 3.
    W. Holsztynski and J. Slawny,Commun. Math. Phys. 66:147 (1979).Google Scholar
  4. 4.
    J. Slawny, inPhase Transitions and Critical Phenomena, Vol. 11, C. Domb and J. L. Lebowitz, eds. (Academic Press, 1986).Google Scholar
  5. 5.
    J. A. Barker,Phys. Rev. Lett. 57:230 (1986).Google Scholar
  6. 6.
    H.-Y. Kim and M. W. Cole,Phys. Rev. B 35:3990 (1987).Google Scholar
  7. 7.
    M. Kolb and K. A. Penson,J. Phys. A: Math. Gen. 19:L779 (1986).Google Scholar
  8. 8.
    J. L. Monroe,J. Phys. A: Math. Gen. 19:2499 (1982).Google Scholar
  9. 9.
    J. Slawny, private communication.Google Scholar
  10. 10.
    D. C. Mattis and R. Galler,Phys. Rev. B 27:2894 (1983).Google Scholar
  11. 11.
    T. Horiguchi and T. Morita,Phys. Lett. 105a:57 (1984).Google Scholar
  12. 12.
    H. P. Griffiths and D. W. Wood,J. Phys. C: Solid State Phys. 6:2533 (1974).Google Scholar
  13. 13.
    F. J. Dyson,Commun. Math. Phys. 12:91 (1969).Google Scholar
  14. 14.
    D. Ruelle,Commun. Math. Phys. 9:267 (1968).Google Scholar
  15. 15.
    J. L. Lebowitz,J. Stat. Phys. 16:3 (1977).Google Scholar
  16. 16.
    A. Martin-Lof,Commun. Math. Phys. 24:253 (1972).Google Scholar
  17. 17.
    M. Suzuki,Phys. Rev. Lett. 28:507 (1972).Google Scholar
  18. 18.
    J. M. Debierre and L. Turban,J. Phys. A: Math. Gen. 16:3571 (1983).Google Scholar
  19. 19.
    H. W. J. Blote, A. Compagner, P. A. M. Cornelissen, A. Hoogtand, F. Mallezie, and C. Vanderzande,Physica 139A:395 (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • James L. Monroe
    • 1
  1. 1.Department of PhysicsPennsylvania State UniversityMonaca

Personalised recommendations