Theoretical and Mathematical Physics

, Volume 80, Issue 1, pp 679–689 | Cite as

Asymptotic solitons of the sine-Gordon equation

  • V. P. Kotlyarov


Soliton Asymptotic Soliton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. V. Gurevich and L. P. Pitaevskii, Zh. Eksp. Teor. Fiz.,65, 590 (1973).Google Scholar
  2. 2.
    E. Ya. Khruslov, Pis'ma Zh. Eksp. Teor. Fiz.,21, 469 (1975); Mat. Sb.,99, 261 (1976).Google Scholar
  3. 3.
    V. D. Ermakova, Dokl. Akad. Nauk SSSR, Ser. A, No. 7, 3 (1982).Google Scholar
  4. 4.
    V. P. Kotlyarov and E. Ya. Khruslov, Teor. Mat. Fiz.,86, 172 (1976); Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 10, 61 (1986).Google Scholar
  5. 5.
    V. A. Kozel and V. P. Kotlyarov, Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 10, 878 (1976); in: Differential Equations and Some Methods of Functional Analysis. Collection of Scientific Works [in Russian], Naukova Dumka, Kiev (1978), p. 89.Google Scholar
  6. 6.
    V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, The Theory of Solitons: The Inverse Scattering Method [in Russian], Nauka, Moscow (1980).Google Scholar
  7. 7.
    V. B. Matveev, “Abelian functions and solitons,” Preprint 373, Wroclaw University (1976).Google Scholar
  8. 8.
    A. R. Its, “The method of isomonodromic deformations in the theory of completely integrable nonlinear evolution systems,” Doctoral Dissertation [in Russian], State University, Leningrad (1986).Google Scholar
  9. 9.
    I. M. Krichever, Nonlinear Equations and Elliptic Curves. Reviews of Science and Technology. Modern Problems of Mathematics [in Russian], VINITI, Moscow (1983), p. 79.Google Scholar
  10. 10.
    V. P. Kotlyarov and E. Ya. Khruslov, “Asymptotic solitons of the modified Kortewegde Vries equation,” Preprint 24-86 [in Russian], Physicotechnical Institute of Low Temperatures, Ukrainian SSR Academy of Sciences, Khar'kov (1986).Google Scholar
  11. 11.
    M. V. Fedoryuk, The Method of Steepest Descent [in Russian], Nauka, Moscow (1977).Google Scholar
  12. 12.
    L. A. Takhtadzhyan and L. D. Faddeev, The Hamiltonian Approach in the Theory of Solitons [in Russian], Nauka, Moscow (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • V. P. Kotlyarov

There are no affiliations available

Personalised recommendations