Journal of Applied Electrochemistry

, Volume 19, Issue 3, pp 394–400 | Cite as

Studies on nonisothermal solid state galvanic cells — effect of gradients on EMF

  • S. K. Ramasesha
  • K. T. Jacob
Papers

Abstract

An expression for the EMF of a nonisothermal galvanic cell, with gradients in both temperature and chemical potential across a solid electrolyte, is derived based on the phenomenological equations of irreversible thermodynamics. The EMF of the nonisothermal cell can be written as a sum of the contributions from the chemical potential gradient and the EMF of a thermocell operating in the same temperature gradient but at unit activity of the neutral form of the migrating species. The validity of the derived equation is confirmed experimentally by imposing nonlinear gradients of temperature and chemical potential across galvanic cells constructed using fully stabilized zirconia as the electrolyte. The nature of the gradient has no effect on the EMF.

Keywords

Physical Chemistry Zirconia Solid State Temperature Gradient Galvanic Cell 

Nomenclature

Ji

flux of speciesi

Xi

generalized forces

Lij

Onsagar coefficient

η1

electrochemical potential of ions

η2

electrochemical potential of electrons

T

absolute temperature

U1*

total energy of transfer of the ion

\(\bar H_1 \)

partial molar enthalpy of the ion

Q1*

heat of transport of the ion

Z1

charge on the ion

F

Faraday constant

Φ

electrostatic potential

μ2

chemical potential of the electron

μ1

chemical potential of the ion

\(\bar S_1 \)

partial entropy of the ion

ESE

EMF developed across the solid electrolyte

EPt

EMF developed across the platinum lead

(μ2)Pt

chemical potential of electrons in platinum

\((\bar S_2 )_{Pt} \)

partial entropy of electrons in platinum

(Q2*)Pt

heat of transport of electrons in platinum

Ecell

EMF developed across the whole cell

\(\mu _{{\rm O}_2 } \)

chemical potential of oxygen

\(\mu _{{\rm O}_2 }^0 \)

chemical potential of oxygen in its standard state

R

universal gas constant

\(P_{O_2 } \)

partial pressure of oxygen

\(\Delta \mu _{O_2 } \)

relative chemical potential of oxygen

ΔμM

relative chemical potential of metal M

aM

activity of metal M

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Janke, in ‘Science and Technology of Zirconia II’ (edited by N. Claussen, M. Rühle and A. H. Heuer), Advances of Ceramics, Vol. 12, Am. Ceram. Soc., Ohio, USA (1984) p. 636.Google Scholar
  2. [2]
    K. S. Goto,Trans. Iron Steel Inst. Japan 16 (1976) 469.Google Scholar
  3. [3]
    C. Gatellier and M. Olette,Compt. Rend. 226C (1968) 1133.Google Scholar
  4. [4]
    K. H. Ulrich and K. Borowski,Arch. Eisenhüttenwes 39 (1968) 259.Google Scholar
  5. [5]
    W. A. Fischer and D. Janke,Arch. Eisenhüttenwes 42 (1971) 249.Google Scholar
  6. [6]
    S. M. Shveikin, B. A. Kamaev, N. F. Bakhcheev, G. P. Zakharov and V. A. Kovylin,Steel in the USSR 3 (1973) 905.Google Scholar
  7. [7]
    E. Forster and H. Richter,Arch. Eisenhüttenwes 40 (1969) 475.Google Scholar
  8. [8]
    C. Wagner,Prog. Solid State Chem 7 (1972) 1.Google Scholar
  9. [9]
    C. B. Alcock, K. Fitzner and K. T. Jacob,J. Chem. Thermodyn. 9 (1977) 1011.Google Scholar
  10. [10]
    B. C. H. Steele, in ‘Electromotive Force Measurements in High Temperature Systems’ (edited by C. B. Alcock), Inst. Min. Met., London (1968) 3.Google Scholar
  11. [11]
    K. T. Jacob and J. H. E. Jeffes,Trans. Inst. Min. Met. 80C (1971) C32.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1989

Authors and Affiliations

  • S. K. Ramasesha
    • 1
  • K. T. Jacob
    • 1
  1. 1.Department of MetallurgyIndian Institute of ScienceBangaloreIndia

Personalised recommendations