Theoretical and Mathematical Physics

, Volume 55, Issue 3, pp 569–580 | Cite as

Invariant current algebra on the light cone and deep inelastic lepton-hadron scattering. II

  • F. A. Lunev


Light Cone Current Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    F. A. Lunev, Teor. Mat. Fiz.,52, 237 (1982).Google Scholar
  2. 2.
    V. S. Vladimirov and B. I. Zav'yalov, Teor. Mat. Fiz.,40, 155 (1979).Google Scholar
  3. 3.
    N. N. Bogolyubov, V. S. Vladimirov, and A. N. Tavkhelidze, Teor. Mat. Fiz.,12, 305 (1972).Google Scholar
  4. 4.
    V. S. Vladimirov and B. I. Zavialov, “Tauberian theorem in quantum field theory”, Preprint E2-11761 [in English], JINR, Dubna (1978).Google Scholar
  5. 5.
    I. M. Gel'fand and G. E. Shilov, Generalized Functions, Vol. 1, Properties and Operations, Academic Press (1964).Google Scholar
  6. 6.
    C. G. Callan and D. J. Gross, Phys. Rev.,22, 156 (1969).Google Scholar
  7. 7.
    L. Hormander, Acta Math.,127, 79 (1971).Google Scholar
  8. 8.
    B. I. Zav'yalov, Teor. Mat. Fiz.,17, 178 (1973).Google Scholar
  9. 9.
    R. Sachs, Phys. Rev.,128, 2851 (1962).Google Scholar
  10. 10.
    F. A. Lunev, “Canonical quantization on the light cone. I. Scalar field”, Preprint 81–73 [in Russian], Institute of High Energy Physics, Serpukhov (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • F. A. Lunev

There are no affiliations available

Personalised recommendations