Fluid Dynamics

, Volume 5, Issue 6, pp 987–991 | Cite as

On the nonlinear theory of a propeller in an axial regime

  • M. M. Barshai


Nonlinear Theory Axial Regime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    N. E. Zhukovskii, Vortex Theory for a Propeller [in Russian], Gostekhteoretizdat, Moscow-Leningrad (1950).Google Scholar
  2. 2.
    V. P. Vetchinkin and N. N. Polyakhov, Theory and Design of an Aircraft Propeller [in Russian], Oborongiz, Moscow (1940).Google Scholar
  3. 3.
    G. I. Maikapar, A. M. Lepilkin, and D. V. Khalezov, “The aerodynamic design of propellers by blade theory,” Trudy TsAGI, No. 529 (1940).Google Scholar
  4. 4.
    L. G. Loitsyanskii, The Mechanics of Fluids and Gases [in Russian], Gostekhizdat, Moscow (1957).Google Scholar
  5. 5.
    G. Viarda, Integral Equations, Gostekhteoretizdat, Moscow (1933).Google Scholar
  6. 6.
    I. A. Birger, Some Mathematical Methods for Solving Engineering Problems [in Russian], Oborongiz, Moscow (1956).Google Scholar
  7. 7.
    M. L. Mil', A. V. Nekrasov, A. S. Braverman, L. N. Grodko, and M. A. Leikand, Helicopters [in Russian], Book 1, Mashinostroenie, Moscow (1966).Google Scholar
  8. 8.
    I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products [in Russian], Fourth Edition, Fizmatgiz, Moscow (1963).Google Scholar
  9. 9.
    M. Keldysh and F. Frankl', “A strict foundation for the theory of the Zhukovskii propeller,” Matem. Sb.,42, No. 2 (1935).Google Scholar

Copyright information

© Consultants Bureau 1973

Authors and Affiliations

  • M. M. Barshai
    • 1
  1. 1.Moscow

Personalised recommendations