Fluid Dynamics

, Volume 5, Issue 4, pp 544–553 | Cite as

Investigation of the dynamics of the stagnation flow of an ideal gas with a rear shock wave

  • V. T. Grin'
  • M. Ya. Ivanov
  • A. N. Kraiko


Shock Wave Stagnation Flow Rear Shock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    O. É. Tsynkova, “Motion of a gas in channels of finite length with a variable back pressure,” Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, Mekhanika i Mashinostroenie, No. 3, 15–24 (1959).Google Scholar
  2. 2.
    J. F. Wasserbauer and R. G. Willoh, “Experimental and analytical investigation of the dynamic response of a supersonic mixed-compression inlet,” AIAA Paper No. 651 (1968).Google Scholar
  3. 3.
    R. A. Mays, “Inlet dynamics and compressor surge,” AIAA Paper No. 484 (1969).Google Scholar
  4. 4.
    S. K. Godunov, “Difference method for calculation of discontinuous solutions of the equations of gas dynamics,” Matem. Sb.,47(89), No. 3, 271–306 (1959).Google Scholar
  5. 5.
    S. K. Godunov, A. V. Zabrodin, and G. P. Prokopov, “Calculating scheme for two-dimensional unsteadystate problems in gas dynamics and calculation of flow around a body, with a departing shock wave”, Zh. Vychislit. Matem. i Matem. Fiz.,1, No. 6, 1020–1050 (1961).Google Scholar
  6. 6.
    M. Ya. Ivanov and A. N. Kraiko, “Numerical solution of the forward problem of a mixed flow in nozzles,” Izv. Akad. Nauk SSSR, Mekh. Zhid. i Gaza, No. 5, 77–83 (1969).Google Scholar
  7. 7.
    M. Ya. Ivanov, “Application of the standard method to analysis of flow conditions in axisymmetric nozzles which cannot be calculated,” Izv. Akad. Nauk SSSR, Mekh. Zhid. i Gaza, No. 6, 137–139 (1969).Google Scholar
  8. 8.
    M. Ya. Ivanov, “Calculation of gas flow in a shock tube of variable cross section,” Izv. Akad. Nauk SSSR, Mekh. Zhid. i Gaza, No. 3 (1970).Google Scholar
  9. 9.
    R. Sauer, Unsteady-State Problems in Gas Dynamics [Russian translation], Izd. Mir, Moscow (1969).Google Scholar
  10. 10.
    A. N. Kraiko, “Problems in the geometric acoustics of one-dimensional unsteady-state and two-dimensional steady-state flows,” Izv. Akad. Nauk SSSR, Mekh. Zhid. i Gaza, No. 5, 104–109 (1967).Google Scholar
  11. 11.
    D. I. Blokhintsev, Acoustics of a Nonhomogeneous Moving Medium [in Russian], Gostekhizdat, Moscow-Leningrad (1946).Google Scholar
  12. 12.
    L. D. Landau and E. M. Lifshits, Mechanics of Continuous Media [in Russian], Gostekhizdat, Moscow (1953).Google Scholar

Copyright information

© Consultants Bureau 1973

Authors and Affiliations

  • V. T. Grin'
    • 1
  • M. Ya. Ivanov
    • 1
  • A. N. Kraiko
    • 1
  1. 1.Moscow

Personalised recommendations