Journal of Statistical Physics

, Volume 51, Issue 5–6, pp 907–947 | Cite as

Absence of mass gap for a class of stochastic contour models

  • Alan D. Sokal
  • Lawrence E. Thomas
Articles

Abstract

We study a class of Markovian stochastic processes in which the state space is a space of lattice contours and the elementary motions are local deformations. We show, under suitable hypotheses on the jump rates, that the infinitesimal generator has zero mass gap. This result covers (among others) the BFACF dynamics for fixed-endpoint self-avoiding walks and the Sterling-Greensite dynamics for fixed-boundary self-avoiding surfaces. Our models also mimic the Glauber dynamics for the low-temperature Ising model. The proofs are based on two new general principles: the minimum hitting-time argument and the mean (or mean-exponential) hitting-time argument.

Key words

Markov chain Markov process contour model mass gap dynamic critical phenomena Monte Carlo Glauber dynamics self-avoiding walk 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. D. Sokal and L. E. Thomas, Exponential convergence to equilibrium for a class of random-walk models,J. Stat. Phys., submitted.Google Scholar
  2. 2.
    G. F. Lawler and A. D. Sokal, Bounds on theL 2 Spectrum for Markov chains and Markov processes: A generalization of Cheeger's inequality,Trans. Am. Math. Soc., to appear.Google Scholar
  3. 3.
    A. Berretti and A. D. Sokal,J. Stat. Phys. 40:483 (1985).Google Scholar
  4. 4.
    N. Madras and A. D. Sokal,J. Stat. Phys. 47:573 (1987).Google Scholar
  5. 5.
    H. J. Hilhorst and J. M. Deutch,J. Chem. Phys. 63:5153 (1975).Google Scholar
  6. 6.
    H. Boots and J. M. Deutch,J. Chem. Phys. 67:4608 (1977).Google Scholar
  7. 7.
    S. Caracciolo and A. D. Sokal,J. Phys. A 19:L797 (1986).Google Scholar
  8. 8.
    Yu. Ya. Gotlib,Fiz. Tverd. Tela 3:2170 (1961) [Sov. Phys. Solid State 3:1574 (1962)].Google Scholar
  9. 9.
    R. J. Glauber,J. Math. Phys. 4:294 (1963).Google Scholar
  10. 10.
    D. A. Huse and D. S. Fisher,Phys. Rev. B 35:6841 (1987).Google Scholar
  11. 11.
    J. Fröhlich, inRecent Developments in Gauge Theories, G. 'tHooftet al., eds. (Plenum Press, New York, 1980), p. 65.Google Scholar
  12. 12.
    B. Berg and D. Foerster,Phys. Lett. 106B:323 (1981).Google Scholar
  13. 13.
    C. Aragão de Carvalho and S. Caracciolo,J. Phys. (Paris) 44:323 (1983).Google Scholar
  14. 14.
    C. Aragão de Carvalho, S. Caracciolo, and J. Fröhlich,Nucl. Phys. B 215[FS7]:209 (1983).Google Scholar
  15. 15.
    T. Sterling and J. Greensite,Phys. Lett. 121B:345 (1983).Google Scholar
  16. 16.
    B. Berg and A. Billoire,Phys. Lett. 139B:297 (1984).Google Scholar
  17. 17.
    B. Berg, A. Billoire, and D. Foerster,Nucl. Phys. B 251[FS13]:665 (1985).Google Scholar
  18. 18.
    B. Baumann and B. Berg,Phys. Lett. 164B:131 (1985).Google Scholar
  19. 19.
    U. Glaus and T. L. Einstein,J. Phys. A 20:L105 (1987).Google Scholar
  20. 20.
    U. Glaus,J. Stat. Phys. 50:1141 (1988).Google Scholar
  21. 21.
    E. Nummelin,General Irreducible Markov Chains and Non-Negative Operators (Cambridge University Press, Cambridge, 1984).Google Scholar
  22. 22.
    K. L. Chung,Markov Chains with Stationary Transition Probabilities, 2nd ed. (Springer, New York, 1967).Google Scholar
  23. 23.
    L. Breiman,Probability (Addison-Wesley, Reading, Massachusetts, 1968), Chapter 15.Google Scholar
  24. 24.
    E. B. Dynkin,Markov Processes, 2 vols. (Springer, Berlin, 1965).Google Scholar
  25. 25.
    R. M. Blumenthal and R. K. Getoor,Markov Processes and Potential Theory (Academic Press, New York, 1968).Google Scholar
  26. 26.
    I. I. Gikhman and A. V. Skorokhod,Introduction to the Theory of Random Processes (Saunders, Philadelphia, 1969).Google Scholar
  27. 27.
    D. Freedman,Markov Chains (Holden-Day, San Francisco, 1971).Google Scholar
  28. 28.
    A. D. Sokal and L. E. Thomas, Lower bounds on the autocorrelation time of a reversible Markov chain, with applications to statistical mechanics, in preparation.Google Scholar
  29. 29.
    J. Neveu,Bases Mathématiques du Calcul des Probabilités, 2nd ed. (Masson, Paris, 1980) [English translation:Mathematical Foundations of the Calculus of Probability (Holden-Day, San Francisco, 1965)].Google Scholar
  30. 30.
    M. Fukushima,Dirichlet Forms and Markov Processes (North-Holland, Amsterdam, 1980).Google Scholar
  31. 31.
    T. Kato,Perturbation Theory for Linear Operators, 2nd ed. (Springer-Verlag, Berlin, 1976).Google Scholar
  32. 32.
    E. B. Dynkin,Tear. Veroya Prim. 3:41 (1958) [Theor. Prob. Appl. 3:38 (1958)].Google Scholar
  33. 33.
    I. I. Gihman and A. V. Skorohod,The Theory of Stochastic Processes II (Springer-Verlag, New York, 1975).Google Scholar
  34. 34.
    J. Neveu,Discrete-Parameter Martingales (North-Holland, Amsterdam, 1975).Google Scholar
  35. 35.
    S. N. Ethier and T. G. Kurtz,Markov Processes: Characterization and Convergence (Wiley, New York, 1986).Google Scholar
  36. 36.
    D. W. Stroock and S. R. S. Varadhan,Multidimensional Diffusion Processes (Springer-Verlag, Berlin, 1979).Google Scholar
  37. 37.
    C. Costantini, A. Gerardi, and G. Nappo,Stat. Prob. Lett. 1:155 (1983).Google Scholar
  38. 38.
    J. L. Doob,Trans. Am. Math. Soc. 58:455 (1945).Google Scholar
  39. 39.
    W. Feller,Ann. Math. 65:527 (1957).Google Scholar
  40. 40.
    G. E. H. Reuter,Acta Math. 97:1 (1957);J. Lond. Math. Soc. 34:81 (1959).Google Scholar
  41. 41.
    D. Williams,Z. Wahrsch. Verw. Gebiete 3:227 (1964).Google Scholar
  42. 42.
    P. Echeverria,Z. Wahrsch. Verw. Gebiete 61:1 (1982).Google Scholar
  43. 43.
    M. Fukushima and D. Stroock, inProbability, Statistical Mechanics, and Number Theory (Academic Press, New York, 1986).Google Scholar
  44. 44.
    T. J. Rivlin,The Chebyshev Polynomials (Wiley, New York, 1974).Google Scholar
  45. 45.
    W. G. Sullivan,Z. Wahrsch. Verw. Gebiete 67:387 (1984).Google Scholar
  46. 46.
    J.-F. Maitre and F. Musy,SIAM J. Numer. Anal. 21:657 (1984).Google Scholar
  47. 47.
    R. Carmona and A. Klein,Ann. Prob. 11:648 (1983).Google Scholar
  48. 48.
    L. E. Thomas and Zhong Yin,J. Math. Phys. 27:2475 (1986).Google Scholar
  49. 49.
    J. M. Hammersley,Proc. Camb. Phil. Soc. 57:516 (1961).Google Scholar
  50. 50.
    I. M. Lifshitz,Zh. Eksp. Teor. Fiz. 42:1354 (1962) [Sov. Phys. JETP 15:939 (1962)].Google Scholar
  51. 51.
    A. T. Ogielski,Phys. Rev. B 36:7315 (1987).Google Scholar
  52. 52.
    H. Takano, H. Nakanishi and S. Miyashita,Phys. Rev. B 37:3716 (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • Alan D. Sokal
    • 1
  • Lawrence E. Thomas
    • 2
  1. 1.Department of PhysicsNew York UniversityNew York
  2. 2.Department of MathematicsPennsylvania State UniversityUniversity Park

Personalised recommendations