Advertisement

Journal of Statistical Physics

, Volume 51, Issue 5–6, pp 871–876 | Cite as

Macroscopic stochastic fluctuations in a one-dimensional mechanical system

  • Errico Presutti
  • W. David Wick
Articles

Key words

One-dimensional hard rods Navier-Stokes correction stochastic behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Andjel, M. Bramson, and T. Liggett, Shocks in the asymmetric exclusion, Preprint (1986).Google Scholar
  2. 2.
    C. Boldrighini, Local equilibrium for hard rods, Preprint (1988).Google Scholar
  3. 3.
    C. Boldrighini, R. L. Dobrushin, and Yu. M. Sukhov, Time asymptotics for some degenerate models of time evolution of infinite particle systems, Preprint, University of Camerino (1980).Google Scholar
  4. 4.
    C. Boldrighini, R. L. Dobrushin, and Yu. M. Sukhov, One-dimensional hard rod caricature of hydrodynamics,J. Stat. Phys. 31:577–616 (1983).Google Scholar
  5. 5.
    R. L. Dobrushin and Yu. M. Sukhov, On the problem of the mathematical foundations of the Gibbs postulate in classical statistical mechanics, inMathematical Problems in Theoretical Physics, G. dell' Antonio, S. Doplicher, and G. Jona-Lasinio, eds. (Springer-Verlag, 1978).Google Scholar
  6. 6.
    C. Boldrighini and W. D. Wick, Fluctuations in a one-dimensional system. I Fluctuations on the Euler scale, Preprint (1988).Google Scholar
  7. 7.
    C. Boldrighini and W. D. Wick, Fluctuations in a one-dimensional system. II The Navier-Stokes correction, Preprint (1988).Google Scholar
  8. 8.
    A. DeMasi, C. Kipnis, E. Presutti, and E. Saada, Microscopic structure at the shock in the asymmetric simple exclusion, Preprint (May 1987).Google Scholar
  9. 9.
    A. DeMasi, E. Presutti, and E. Scacciatelli, The weakly asymmetric simple exclusion, Preprint, NSF-ITP-87-147.Google Scholar
  10. 10.
    R. L. Dobrushin and R. Siegmund-Schultze, The hydrodynamic limit for systems of particles with independent evolution,Math. Nachr. 105:225–245 (1982).Google Scholar
  11. 11.
    J. L. Lebowitz, E. Orlandi, and E. Presutti, Convergence of stochastic cellular automaton to Burgers' equation: Fluctuations and stability, Preprint, Rutgers (1988).Google Scholar
  12. 12.
    J. L. Lebowitz, E. Presutti, and H. Spohn, Microscopic models of hydrodynamical behavior, Preprint, Rutgers (1988).Google Scholar
  13. 13.
    E. Presutti, Ya. G. Sinai, and M. R. Soloviecic, Hyperbolicity and Möller morphism for a model of classical statistical mechanics, inProgress in Physics, Vol. 10,Statistical Physics and Dynamical Systems (Birkhauser, 1985), pp. 253–284.Google Scholar
  14. 14.
    M. Reed and B. Simon,Methods of Modern Mathematical Physics. Scattering Theory, Vol. III (Academic Press, 1979).Google Scholar
  15. 15.
    H. Spohn, Hydrodynamic theory for equilibrium time correlation functions of hard rods,Ann. Phys. 141:353–364 (1982).Google Scholar
  16. 16.
    W. D. Wick, A dynamical phase transition in an infinite particle system,J. Stat. Phys. 38:1005–1025 (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • Errico Presutti
    • 1
  • W. David Wick
    • 1
  1. 1.Mathematics DepartmentUniversity of Colorado at BoulderBoulder

Personalised recommendations