Advertisement

Journal of Statistical Physics

, Volume 51, Issue 5–6, pp 803–815 | Cite as

Stability of nonstationary states of classical, many-body dynamical systems

  • G. Grinstein
Articles

Abstract

We summarize recent arguments which show that for a broad class of classical, many-body dynamical model systems with short-range interactions (such as coupled maps, cellular automata, or partial differential equations), collectively chaotic states—nonstationary states wherein some Fourier amplitude varies chaotically in time—cannot occur generically. While chaos occurs ubiquitously on alocal level in such systems, the macroscopic state of the system typically remains periodic or stationary. This implies that the dimensionD of chaotic (“strange”) attractors must diverge with the linear sizeL of the system likeD∼(L/ξC)d ind space dimensions, where ξ (<∞) is the spatial coherence length. We also summarize recent work which demonstrates that in spatially isotropic systems that have short-range interactions and evolve (like coupled maps) in discrete time, periodic states are never stable under generic conditions. In spatially anisotropic systems, however, short-range interactions that exploit the anisotropy and so allow for the stabilization of periodic states do exist.

Key words

Chaos periodicity attractor dimension dynamical systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Ciliberto and J. P. Gollub,J. Fluid Mech. 158:381 (1985).Google Scholar
  2. 2.
    M. Giglio, S. Musazzi, and U. Perini,Phys. Rev. Lett. 47:243 (1981).Google Scholar
  3. 3.
    A. Brandstater and H. L. Swinney,Phys. Rev. A 35:2207 (1987).Google Scholar
  4. 4.
    S. Ciliberto and J. P. Gollub,Nuovo Cimento 6D:309 (1985).Google Scholar
  5. 5.
    E. Meron and I. Procaccia,Phys. Rev. Lett. 56:1323 (1986).Google Scholar
  6. 6.
    E. N. Lorenz,J. Atmos. Sci. 20:130 (1963).Google Scholar
  7. 7.
    J. H. Curry, J. R. Herring, J. Loncaric, and S. A. Orszag,J. Fluid Mech. 147:1 (1984).Google Scholar
  8. 8.
    T. Bohr, G. Grinstein, Y. He, and C. Jayaprakash,Phys. Rev. Lett. 58:2155 (1987).Google Scholar
  9. 9.
    C. H. Bennett, G. Grinstein, Y. He, C. Jayaprakash and D. Mukamel, to be published.Google Scholar
  10. 10.
    K. Kaneko, preprint, and references therein.Google Scholar
  11. 11.
    J. D. Keeler and J. D. Farmer,Physica 23D:413 (1986), and references therein.Google Scholar
  12. 12.
    P. Collett and J.-P. Eckmann,Iterated Maps on the Interval as Dynamical Systems (Birkhauser, Boston, 1980), and references therein.Google Scholar
  13. 13.
    J. P. Crutchfield and B. A. Huberman,Phys. Lett. 77A:407 (1980).Google Scholar
  14. 14.
    J. Crutchfield, M. Nauenberg, and J. Rudnick,Phys. Rev. Lett. 46:933 (1981).Google Scholar
  15. 15.
    B. Shraiman, C. E. Wayne, and P. C. Martin,Phys. Rev. Lett. 46:935 (1981).Google Scholar
  16. 16.
    L. D. Landau and E. M. Lifshitz,Fluid Mechanics (Pergamon, Oxford, 1959).Google Scholar
  17. 17.
    P. Grassberger and I. Procaccia,Phys. Rev. Lett. 50:346 (1983).Google Scholar
  18. 18.
    H. L. Swinney and J. P. Gollub,Physica 18D:448 (1986).Google Scholar
  19. 19.
    J. D. Gunton, M. San Miguel, and P. S. Sahni, inPhase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1983), and references therein.Google Scholar
  20. 20.
    R. J. Glauber,J. Math. Phys. 4:294 (1963).Google Scholar
  21. 21.
    I. M. Lifshitz,Zh. Eksp. Theor. Fiz. 42:1354 (1962) [Sov. Phys. JETP 15:939 (1962)].Google Scholar
  22. 22.
    C. H. Bennett and G. Grinstein,Phys. Rev. Lett. 55:657 (1985), and references therein.Google Scholar
  23. 23.
    G. Nicolas and I. Prigogine,Self-Organization in Non-Equilibrium Systems (Wiley, New York, 1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • G. Grinstein
    • 1
  1. 1.IBM Research DivisionT. J. Watson Research CenterYorktown Heights

Personalised recommendations