Skip to main content
Log in

Chemical composition of degrading mangrove leaf litter and changes produced after consumption by mangrove crabNeosarmatium smithi (Crustacea: Decapoda: Sesarmidae)

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The leaves of the mangroveCeriops tagal contained 3.2–4.1% (all percentages relate to dry weight) ofd-1-O-methyl-muco-inositol previously unreported in mangroves. They consisted of 37% aqueous acetone-water-soluble material, 18% water-insoluble polysaccharides, and ca. 50% polyphenols, which include soluble and insoluble tannins and lignin. The polysaccharide component sugars were glucose, arabinose, uronic acids, mannose, xylose, galactose, and rhamnose in the proportions 28∶26∶22∶10∶7∶5∶2, respectively. The leaves were pectate rich, and the low level of glucan was presumed to consist mainly of cellulose. After four weeks of biodegradation, ca. 60% of the acetone-water-soluble material was lost from the leaves. Degradation processes greatly altered the polysaccharide components in the leaves. Pectates were rapidly degraded, while other polysaccharides, although reduced proportionately, resisted degradation at about the same level, and all component sugars were found in the 8-week-old leaves. “Apparent lignin” contents increased from 15 to >30% during biodegradation up to eight weeks. The yields of the major fractions in corresponding fecal material fromNeosarmatium smithi showed a similar trend to the diets. An enrichment of the insoluble residue was noticeable due to the digestion of dialyzable material. The fecal carbohydrate content was greatly reduced (7–11%) and the “apparent lignin” increased (27–39%) due to its resistance to degradation. All dietary polysaccharide component sugars were found in the fecal residues, including some uronic acids. The leaves also contained a readily water-soluble fraction (15%) which consisted of pectates strongly complexed with proanthocyanidins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, G.A., 1965. Lignin determination, pp. 185–187,in R.L. Whistler (ed.).Methods in Carbohydrate Chemistry, Vol. 5. Academic Press, New York.

    Google Scholar 

  • Alongi, D.M. 1987. The influence of mangrove-derived tannins on intertidal meiobenthos in tropical estuaries.Oecologia (Berlin) 71:537–540.

    Google Scholar 

  • Angyal, S.J., andKondo, Y. 1980. The 4,6-benzylidene acetals, and the conformation of methyl α-D-idopyranoside.Carbohydr. Res. 81:35–48.

    Google Scholar 

  • Angyal, S.J., andOdier, L. 1983. The effect ofO-methylation on chemical shifts in the1H- and13C-N.M.R. spectra of cyclic polyols.Carbohydr. Res. 123:23–29.

    Google Scholar 

  • Angyal, S.J., Bender, V.J., Gilham, P.T., Hoskinson, R.M., andPitman, M.E. 1967. Cyclitols. XXVI. The solvolysis of tosylinositols in acetic acid.Aust. J. Chem. 20:2109–2116.

    Google Scholar 

  • Benner, R., andHodson, R.E. 1985. Microbial degradation of the leachable and lignocellulosic components of leaves and wood fromRhizophora mangle in a tropical mangrove swamp.Mar. Ecol. Prog. Ser. 23:221–229.

    Google Scholar 

  • Benner, R., Maccubbin, A.E., andHodson, R.E. 1984. Preparation, characterization, and microbial degradation of specifically radiolabeled [14C] lignocelluloses from marine and freshwater macrophytes.Appl. Environ. Microbiol. 47:381–389.

    Google Scholar 

  • Benner, R., Peele, E.R., andHodson, R.E. 1986. Microbial utilization of dissolved organic matter from leaves of the red mangrove,Rhizophora mangle, in the fresh creek estuary, Bahamas.Estuarine Coastal Shelf Sci. 23:607–619.

    Google Scholar 

  • Bhosle, N.B., Dhargalkar, V.K., Matondkar, S.G.P., andBukhari, S.S. 1976. Biochemical composition of mangrove leaves from Goa.Indian J. Mar. Sci. 5:239–241.

    Google Scholar 

  • Birch, W.R. 1975. Some chemical and calorific properties of tropical marine angiosperms compared with those of other plants.J. Appl. Ecol. 12:201–212.

    Google Scholar 

  • Blake, J.D., andRichards, G.N. 1970. Polysaccharides of tropical pasture herbage I. Studies on the distribution of the major polysaccharide components of spear grass (Heteropogon contortus) during growth.Aust. J. Chem. 23:2353–2360.

    Google Scholar 

  • Broadhurst, R.B., andJones, W.T. 1978. Analysis of condensed tannins using acidified vanillin.J. Sci. Food Agric. 29:788–794.

    Google Scholar 

  • Bunt, J.S., Boto, K.G., andBoto, G. 1979. A survey method for estimating potential levels of mangrove forest primary production.Mar. Biol. (Berlin) 52:123–128.

    Google Scholar 

  • Burns, R.E. 1971. Method for estimation of tannin in grain sorghum.Agron. J. 63:511–512.

    Google Scholar 

  • Cundell, A.M., Brown, M.S., Stanford, R., andMitchell, R. 1979. Microbial degradation ofRhizophora mangle leaves immersed in the sea.Estuarine Coastal Mar. Sci. 9:281–286.

    Google Scholar 

  • Dekker, R.F.H., Richards, G.N., andPlayne, M.J. 1972. Digestion of polysaccharide constituents of tropical pasture herbage in the bovine rumen Part I. Townsville stylo (Stylosanthes humilis).Carbohydr. Res. 22:173–185.

    Google Scholar 

  • Dittrich, P., Gietl, M., andKandler, O. 1971.scd-1-O-methyl-muco-inositol in higher plants.Phytochemistry 11:245–250.

    Google Scholar 

  • Flowers, T.J., Troke, P.P., andYeo, A.R. 1977. The mechanism of salt tolerance in halophytes.Annu. Rev. Plant Physiol. 28:89–121.

    Google Scholar 

  • Ghosh, A., Misra, S., Dutta, A.K., andChoudhury, A. 1985. Pentacyclic triterpenoids and sterols from seven species of mangrove.Phytochemistry 24:1725–1727.

    Google Scholar 

  • Giddins, R.L., Lucas, J.S., Neilson, M.J., andRichards, G.N. 1986. Feeding ecology of the mangrove crabNeosarmatium smithi (Crustacea: Decapoda: Sesarmidae).Mar. Ecol. Prog. Ser. 33:147–155.

    Google Scholar 

  • Hartree, E.F., 1972. Determination of protein: A modification of the Lowry method that gives a linear photometric response.Anal. Biochem. 48:422–427.

    Google Scholar 

  • Hogg, R.W., andGillan, F.T. 1984. Fatty acids, sterols, and hydrocarbons in the leaves from eleven species of mangrove.Phytochemistry 23:93–97.

    Google Scholar 

  • Hoton-Dorge, M., 1976. Séparation des aldoses et des polysaccharides par chromatographie en couche mince de cellulose et noveau réactif de pulvérisation permettant leur révélation sensible.J. Chromatogr. 116:417–423.

    Google Scholar 

  • Hough, L., andJones, J.K.N. 1962. Chromatography on paper, pp. 21–31,in R.L. Whistler, and M.L. Wolfram (eds.).Methods in Carbohydrate Chemistry, Vol. 1. Academic Press, New York.

    Google Scholar 

  • Jamale, B.B., andJoshi, G.V. 1976. Physiological studies in senescent leaves of mangroves.Indian J. Exp. Biol. 14:697–699.

    Google Scholar 

  • Kotmire, S.Y., andBhosale, L.J. 1980. Chemical composition of leaves ofAvicennia officinalis Linn. & A.Marina var.acutissima Stapf and Moldenke.Indian J. Mar. Sci. 9:299–301.

    Google Scholar 

  • Leh, C.M.U., andSasekumar, A. 1985. The food of sesarmid crabs in Malaysian mangrove forests.Malay. Nat. J. 39:135–145.

    Google Scholar 

  • Malley, D.F. 1978. Degradation of mangrove leaf litter by the tropical sesarmid crabChiromanthes onychophorum.Mar. Biol. 49:377–386.

    Google Scholar 

  • McArthur, C. 1987. Histology of neutral detergent fibre from a tannin rich foliage, pp. 43–44,in M. Rose (ed.). Herbivore nutrition research, Proceedings, 2nd International Symposium on Nutrition of Herbivores. Australian Society of Animal Production. Brisbane, Australia.

    Google Scholar 

  • McGinnis, G.D. 1982. Preparation of aldononitrile acetates usingN-methylimidazole as catalyst and solvent.Carbohydr. Res. 108:284–292.

    Google Scholar 

  • Mole, S., andWaterman, P.G. 1987. A critical analysis of techniques for measuring tannins in ecological studies I. Techniques for chemically defining tannins.Oecologia (Berlin) 72:137–147.

    Google Scholar 

  • Neilson, M.J., Painter, T.J., andRichards, G.N. 1986a. Flavologlycan: A novel glycoconjugate from leaves of mangrove (Rhizophorasytlosa Griff).Carbohydr. Res. 147:315–324.

    Google Scholar 

  • Neilson, M.J., Giddins, R.L., andRichards, G.N. 1986b. Effects of tannins on the palatability of mangrove leaves to the tropical sesarminid crabNeosarmatium smithi.Mar. Ecol. Prog. Ser. 34:185–186.

    Google Scholar 

  • Odum, W.E., andHeald, E.J. 1975. The detritus based food-web of an estuarine mangrove community, pp. 265–286,in L.E. Cronin (ed.). Estuarine Research, Vol. 1. Academic Press, New York.

    Google Scholar 

  • Poovachiranon, S., Boto, K., andDuke, N. 1986. Food preference studies and ingestion rate measurements of the mangrove amphipodParhyale hawaiensis (Dana).J. Exp. Mar. Biol. Ecol. 98:129–140.

    Google Scholar 

  • Popp, M. 1984. Chemical composition of Australian mangroves II. Low molecular weight carbohydrates.Z. Pflanzenphysiol. Bd. 113:411–421.

    Google Scholar 

  • Price, M.L., andButler, L.G. 1977. Rapid visual estimation and spectrophotometric determination of tannin content of sorghum grain.J. Agric. Food Chem. 25:1268–1273.

    Google Scholar 

  • Rahman, M.D., andRichards, G.N. 1987. Interference by flavonoids in the phenol-sulfuric acid analysis of carbohydrates.Carbohydr. Res. 170:112–115.

    Google Scholar 

  • Rahman, M.D., andRichards, G.N. 1988. Interactions of starch and other polysaccharides with condensed tannins in hot water extracts of Ponderosa pine bark.J. Wood Chem. Tech. 8:111–120.

    Google Scholar 

  • Reed, J.D., 1986. Relationships among soluble phenolics, insoluble pranthocyanidins and fiber in East African browse species.J. Range Manage. 39:5–7.

    Google Scholar 

  • Ribereau-Gayon, P. 1972a. The tannins, p. 195,in V.H. Heywood (ed.). Plant Phenolics. Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Ribereau-Gayon, P. 1972b. Chemistry of phenols. Application to natural products, p. 44,in V.H. Heywood (ed.). Plant Phenolics. Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Ribereau-Gayon, P. 1972c. The tannins, p. 178,in V.H. Heywood (ed.). Plant Phenolics. Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Robertson, A.I. 1986. Leaf-burying crabs: Their influence on energy flow and export from mixed mangrove forests (Rhizophora spp.) in northern Australia.J. Exp. Mar. Biol. Ecol. 102:237–248.

    Google Scholar 

  • Saeman, J.F., Moore, W.E., Mitchell, R.L., andMillett, M.A. 1954. Techniques for the determination of pulp constituents by quantitative paper chromatography.Tappi 37:336–343.

    Google Scholar 

  • Spain, A.V., andHolt, J.A. 1980. The elemental status of the foliage and branchwood of seven mangrove species from northern Queensland. Commonwealth Scientific and Industrial Research Organisation. Australia. Division of soils divisional report No. 49.

  • Sumitra-Vijayaraghavan, Ramadhas, V., Krishna, L., Kumari, andRoyan, J.P. 1980. Biochemical changes and energy content of the mangrove,Rhizophora mucronata, leaves during decomposition.Indian J. Mar. Sci. 9:120–123.

    Google Scholar 

  • Trevelyan, W.E., Procter, D.P., andHarrison, J.S. 1950. Detection of sugars on paper chromatograms.Nature 166:444–445.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neilson, M.J., Richards, G.N. Chemical composition of degrading mangrove leaf litter and changes produced after consumption by mangrove crabNeosarmatium smithi (Crustacea: Decapoda: Sesarmidae). J Chem Ecol 15, 1267–1283 (1989). https://doi.org/10.1007/BF01014829

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01014829

Key words

Navigation