Journal of Chemical Ecology

, Volume 15, Issue 2, pp 685–695 | Cite as

Structure-activity studies on aggregation pheromone components ofPityogenes chalcographus (Coleoptera: Scolytidae)

All stereoisomers of chalcogran and methyl 2,4-decadienoate
  • John A. Byers
  • Hans-Erik Högberg
  • C. Rikard Unelius
  • Göran Birgersson
  • Jan Löfqvist


Syntheses of all four Stereoisomers (2S,5S; 2S,5R;2R,5R; and2R,5S) of chalcogran, a major component of the aggregation pheromone ofPityogenes chalcographus, and of all four isomers (2Z,4Z; 2Z,4E; 2E,4E; and 2E,4Z) of methyl 2,4-decadienoate (MD), the second major pheromone component, are briefly described. Attraction responses of walking beetles of both sexes were tested to mixtures of the synergistic pheromone components or analogs. These bioassays showed that theE,Z isomer of MD is the most active when tested with chalcogran. When tested with (E,Z)-MD, (2S,5R)-chalcogran was the most active stereoisomer, while 2R,5R and 2R,5S isomers had intermediate activities, and the 2S,5S isomer was inactive. There was no evidence that the relatively less active Stereoisomers of chalcogran inhibited or promoted attraction to (2S,5R)-chalcogran with (E,Z)-MD. Male beetles only produce the activeE,Z isomer of MD (inactive alone) and their hindguts contain the most active (2S,5R)- and least active (2S,5S)-chalcogran. A mixture of all MD isomers with racemic chalcogran was not significantly different in attractivity compared to (E,Z)-MD with racemic chalcogran, indicating no synergistic or inhibitory effects of the inactive isomers of MD.

Key words

Synergism aggregation pheromone Pityogenes chalcographus Coleoptera Scolytidae chalcogran methyl (2E,4Z)-2,4-decadienoate enantiomers isomers stereoisomers synthesis bioassay structure-activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baeckström, P., Jacobsson, U., Norin, T. andUnelius, C.R. 1988. Synthesis and characterization of all four isomers of methyl 2,4-decadienoate for an investigation of the pheromone components ofPityogenes chalcographus.Tetrahedron 44:2541–2548.Google Scholar
  2. Banerji, A., andPal, S.C. 1983. Total synthesis of sylvamide, aPiper alkamide.Phytochemistry 22:1028–1030.Google Scholar
  3. Björkling, F., Norin, T., andUnelius, C.R. 1987. A stereospecific synthesis of all fourisomers of 9,11-tetradecadienyl acetate using a general method applicable to 1,3-dienes.J. Org. Chem. 52:292–294.Google Scholar
  4. Borden, J.H., Chong, L., Mclean, J.A., Slessor, K.M., andMori, K. 1976.Gnathotrichus sulcatus: Synergistic response to enantiomers of the aggregation pheromone sulcatol.Science 192:894–896.Google Scholar
  5. Browne, L.E., Birch, M.C., andWood, D.L. 1974. Novel trapping and delivery systems for airborne insect pheromones.J. Insect Physiol. 20:183–193.Google Scholar
  6. Byers, J.A., andWood, D.L. 1981. Interspecific effects of pheromones on the attraction of the bark beetles,Dendroctonus brevicomis andIps paraconfusus in the laboratory.J. Chem. Ecol. 7:9–18.Google Scholar
  7. Byers, J.A., Lanne, B.S., Löfqvist, J., Schlyter, F., andBergström, G. 1985. Olfactory recognition of host-tree susceptibility by pine shoot beetles.Naturwissenschaften 72:324–326.Google Scholar
  8. Byers, J.A., Birgersson, G., Löfqvist, J., andBergström, G. 1988. Synergistic pheromones and monoterpenes enable aggregation and host recognition by a bark beetle.Naturwissenschaften 75:153–155.Google Scholar
  9. Byers, J.A.,Birgersson, G.,Löfqvist, J.,Appelgren, M., andBergström, G. 1989. Isolation of pheromone synergists ofPityogenes chalcographus from complex insect-plant odors by gas Chromatographie fractionation and subtractive-combination bioassay.J. Chem. Ecol. (submitted).Google Scholar
  10. Cardé, R.T., andBaker, T.C. 1984. Sexual communication with pheromones. pp. 355–383,in W.J. Bell and R.T. Cardé (eds.). Chemical Ecology of Insects. Chapman and Hall, London.Google Scholar
  11. Crombie, L., andDenman, R. 1984. Insecticidal amides. Synthesis of natural 2(E),4(E),10(E)-pipercide, its 2(E),4(E),10(Z)-stereomer, and related isobutylamides.Tetrahedron Lett. 25:4267–4270.Google Scholar
  12. Deans, D.R. 1981. Use of heart cutting in gas chromatography: A review.J. Chromatogr. 203:19–28.Google Scholar
  13. Fieser, L.F. 1964.Organic Experiments. p. 162 D.C. Heath & Co., Boston.Google Scholar
  14. Francke, W., Heemann, V., Gerken, B., Renwick, J.A.A., andVitë, J.P. 1977. 2-Ethyl-1,6-dioxaspiro[4.4]nonane, principal aggregation pheromone ofPityogenes chalcographus (L.).Naturwissenschaften 64:590–591.Google Scholar
  15. Francke, W., Reith, W., andSinnwell, V. 1980. Bestimmung der relativen Konfiguration bei Spiroacetalen durch1H-und13C-NMR-Spektroskopie.Chem. Ber. 113:2686–2693.Google Scholar
  16. Garigipati, R.S., andWeinreb, S.M. 1983. Stereospecific synthesis of acyclic unsaturated amino alcohols. A new approach to threo- and erythro-sphingosine.J. Am. Chem. Soc. 105:4499–4501.Google Scholar
  17. Högberg, H.E., Hedenström, E., Isaksson, R., andWassgren, A.B. 1987. Preparation of the four stereoisomers of chalcogran, pheromone components ofPityogenes chalcographus and of both enantiomers of γ-caprolactone, pheromone component ofTrogoderma granarium.Acta. Chem. Scand. Ser. B 41:694–697.Google Scholar
  18. Isaksson, R., andRöschester, J. 1985. Preparative and analytical enantiomer separation of some delta-1,3-thiazoline-2-thiones on swollen microcrystalline triacetylcellulose (TAC).J. Org. Chem. 50:2519–2521.Google Scholar
  19. Koppenhoefer, B., Hintzer, K., Weber, R., andSchurig, V. 1980. Quantitative Trennung der Enantiomerenpaare des Pheromons 2-Ethyl-1,6-dioxaspiro[4.4]nonan durch Komplexierung-schromatographie an einem optisch aktiven Metallkomplex.Angew. Chem. 92:473–474.Google Scholar
  20. Leadbetter, G., andFlimmer, J.R. 1979. An improved preparation of some insect sex attractants: Synthesis and separation of geometrical isomers by formation of urea complexes.J. Chem. Ecol. 5:101–108.Google Scholar
  21. Pearce, G.T., Gore, W.E., Silverstein, R.M., Peacock, J.W., Cuthbert, R.A., Lanier, G.N., andSimeons, J.B. 1975. Chemical attractants for the smaller European elm bark beetle,Scolytus multistriatus (Coleoptera: Scolytidae).J. Chem. Ecol. 1:115–124.Google Scholar
  22. Renwick, J.A.A., Hughes, P.R., andKrull, I.S. 1976. Selective production ofcis- andtrans- verbenol from (+)-α-pinene by a bark beetle.Science 191:199–201.Google Scholar
  23. Rickards, G., andWeiler, L. 1978. Stereoselective synthesis of 1-substituted (E,E)- and (E,Z)-2,4-decadienyl derivatives.J. Org. Chem. 43:3607–3609.Google Scholar
  24. Roush, W.R. 1980. Total synthesis of (±)-dendrobine.J. Am. Chem. Soc. 102:1390–1404.Google Scholar
  25. Schurig, V., andWeber, R. 1984. Use of glass and fused-silica open tubular columns for the separation of structural, configurational and optical isomers by selective compiexation gas chromatography.J. Chromatogr. 289:321–332.Google Scholar
  26. Silverstein, R.M., Rodin, J.O., andWood, D.L. 1966. Sex attractants in frass produced by maleIps paraconfusus in ponderosa pine.Science 154:509–510.Google Scholar
  27. Silverstein, R.M., Rodin, J.O., andWood, D.L. 1967. Methodology for isolation and identification of insect pheromones with reference to studies on California five-spinedIps.J. Econ. Entomol. 60:944–949.Google Scholar
  28. Silverstein, R.M., Brownlee, R.G., Bellas, T.E., Wood, D.L., andBrowne, L.E. 1968. Brevicomin: Principal sex attractant in the frass of the female western pine beetle.Science 59:889–890.Google Scholar
  29. Smith, L.R.,Williams, H.J., andSilverstein, R.M. 1978. Facile synthesis of optically active 2-ethyl-1,6-dioxaspiro[4.4]nonane, component of the aggregation pheromone of the beetlePityogenes chalcographus (L.).Tetrahedron Lett. 3231–3232.Google Scholar
  30. Stille, J.K., andGroh, B.L. 1987. Stereospecific cross-coupling of vinyl halides with vinyl tin reagents catalyzed by palladium.J. Am. Chem. Soc. 109-813-817.Google Scholar
  31. Vité, J.P. 1965. 1st die vorbeugende Begiftung von Fangbaume zweckmassig?Allg. Forstzeitschrift 20:438–439.Google Scholar
  32. Vité, J.P., andRenwick, J.A.A. 1970. Differential diagnosis and isolation of population attractants.Contrib. Boyce Thompson Inst. 24:323–328.Google Scholar
  33. Weir, J.R., Patel, B.A., andHeck, R.F. 1980. Palladium-catalyzed triethylammonium formate reductions. 4. Reduction of acetylenes tocis monoenes and hydrogenolysis of tertiary allylic amines.J. Org. Chem. 45:4926–4931.Google Scholar
  34. Wood, D.L. 1982. The role of pheromones, kairomones, and allomones in the host selection and colonization behavior of bark beetles.Annu. Rev. Entomol. 27:411–446.Google Scholar
  35. Wood, D.L., Browne, L.E., Ewing, B., Lindahl, K., Bedard, W.D., Tilden, P.E., Mori, K., Pitman, G.B., andHughes, P.R. 1976. Western pine beetle: Specificity among enantiomers of male and female components of an attractive pheromone.Science 192:896–898.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • John A. Byers
    • 1
  • Hans-Erik Högberg
    • 2
  • C. Rikard Unelius
    • 3
  • Göran Birgersson
    • 4
  • Jan Löfqvist
    • 1
  1. 1.Department of EcologyUniversity of LundLundSweden
  2. 2.University College of Sundsvall/HärnösandSundsvallSweden
  3. 3.Department of Organic ChemistryRoyal Institute of TechnologyStockholmSweden
  4. 4.Department of Chemical EcologyGöteborg UniversityGöteborgSweden

Personalised recommendations