Advertisement

Journal of Statistical Physics

, Volume 18, Issue 5, pp 501–522 | Cite as

The poisson representation. II Two-time correlation functions

  • S. Chaturvedi
  • C. W. Gardiner
Articles

Abstract

Basic formulas for the two-time correlation functions are derived using the Poisson representation method. The formulas for the chemical system in thermodynamic equilibrium are shown to relate directly to the fluctuationdissipation theorems, which may be derived from equilibrium statistical mechanical considerations. For nonequilibrium systems, the formulas are shown to be generalizations of these fluctuation-dissipation theorems, but containing an extra term which arises entirely from the nonequilibrium nature of the system. These formulas are applied to two representative examples of equilibrium reactions (without spatial diffusion) and to a nonequilibrium chemical reaction model (including the process of spatial diffusion) for which the first two terms in a systematic expansion for the two-time correlation functions are calculated. The relation between the Poisson representation method and Glauber-SudarshanP-representation used in quantum optics is discussed.

Key words

Master equations chemical reactions reaction-diffusion systems Poisson representation two-time correlation functions fluctuation-dissipation theorems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. W. Gardiner and S. Chaturvedi,J. Stat. Phys. 17:429 (1977).Google Scholar
  2. 2.
    W. Bernard and H. B. Callen,Rev. Mod. Phys. 31:1017 (1959).Google Scholar
  3. 3.
    W. Bernard and H. B. Callen,Phys. Rev. 118:1466 (1960).Google Scholar
  4. 4.
    R. Balescu,Equilibrium and Non-equilibrium Statistical Mechanics (Wiley-Interscience, New York, 1975).Google Scholar
  5. 5.
    R. J. Glauber,Phys. Rev. 130:2529 (1963);131:2761 (1963).Google Scholar
  6. 6.
    E. C. G. Sudarshan,Phys. Rev. Lett. 16:534 (1966).Google Scholar
  7. 7.
    L. Arnold,Stochastic Differential Equations (Wiley-Interscience, New York, 1974).Google Scholar
  8. 8.
    K. Kitahara, Thesis, Universite Libré de Bruxelles (1974).Google Scholar
  9. 9.
    R. Kubo, K. Matsuo, and K. Kitahara,J. Stat. Phys. 9:51 (1973).Google Scholar
  10. 10.
    J. Keizer,J. Chem. Phys. 64:1679 (1976);65:4431 (1976).Google Scholar
  11. 11.
    N. G. van Kampen,Adv. Chem. Phys. 34:245 (1976).Google Scholar
  12. 12.
    F. Schlögl,Z. Phys. 253:147 (1972).Google Scholar
  13. 13.
    K. J. McNeil and D. F. Walls,J. Stat. Phys. 10:439 (1974).Google Scholar
  14. 14.
    C. W. Gardiner, K. J. McNeil, D. F. Walls, and I. S. Matheson,J. Stat. Phys. 14:307 (1976).Google Scholar
  15. 15.
    S. Chaturvedi, C. W. Gardiner, and D. F. Walls,Phys. Lett. 57A:404 (1976).Google Scholar
  16. 16.
    N. G. van Kampen, inTopics in Statistical Mechanics and Biophysics, R. Picirelli, ed. (American Inst. Physics, 1976).Google Scholar
  17. 17.
    W. H. Louisell, inQuantum Theory of Noise, Proc. of the Int. School of Phys. “Enrico Fermi”Course 42, Varenna, Italy, 1967 (Academic Press, New York, London).Google Scholar
  18. 18.
    H. J. Carmichael, Thesis, University of Waikato (1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • S. Chaturvedi
    • 1
  • C. W. Gardiner
    • 1
  1. 1.Department of PhysicsUniversity of WaikatoHamiltonNew Zealand

Personalised recommendations