Journal of Statistical Physics

, Volume 35, Issue 3–4, pp 381–385 | Cite as

The superstability of pair-potentials of positive type

  • J. T. Lewis
  • J. V. Pulè
  • P. de Smedt


We prove that a pair-potential which is continuous,L1, and of positive type satisfies a condition of the superstability kind with best-possible constants. The applications to statistical thermodynamics are mentioned.

Key words

Superstability pair-potential functions of positive type thermodynamic limit 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Ginibre, On the Asymptotic Exactness of the Bogoliubov Approximation for Many Boson Systems,Commun. Math. Phys. 8:26–51 (1968).Google Scholar
  2. 2.
    D. Ruelle, Classical Statistical Mechanics of a System of Particles,Helv. Phys. Acta 36:183–197 (1963).Google Scholar
  3. 3.
    M. E. Fisher, The Free Energy of a Macroscopic System,Arch. Rat. Mech. Anal. 17:377–410 (1964).Google Scholar
  4. 4.
    E. H. Lieb, Simplified Approach to the Ground-State Energy of an Imperfect Bose Gas,Phys. Rev. 130:2518–2528 (1963).Google Scholar
  5. 5.
    E. H. Lieb and M. De Llano, Some Exact Results in the Hartree-Fock Theory of a Many-Fermion System at High Densities,Phys. Lett. 37B:47–49 (1971).Google Scholar
  6. 6.
    J. T. Lewis, J. V. Pulè, and P. de Smedt, Boson Condensation in the van der Waals Limit in a Gas of Interacting Bosons, preprint, DIAS-TP-83-48, Dublin Institute for Advanced Studies, 1983.Google Scholar
  7. 7.
    J. Conlon, The Ground-State Energy of a Classical Gas, preprint, Institute of Theoretical Physics, Vienna (1983).Google Scholar
  8. 8.
    J. Dixmier,Les C *-Algebres et leur Representations (Gauthier-Villars, Paris, 1964).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • J. T. Lewis
    • 1
  • J. V. Pulè
    • 1
    • 2
  • P. de Smedt
    • 3
  1. 1.Dublin Institute for Advanced StudiesDublin 4Ireland
  2. 2.University CollegeBelfield, Dublin 4
  3. 3.Instituut voor Theoretische FysicaKatholieke Universiteit LeuvenHeverleeBelgium

Personalised recommendations