Journal of Statistical Physics

, Volume 61, Issue 5–6, pp 1161–1185 | Cite as

Many-body functions of nonprimitive electrolytes in one dimension

  • Fernando Vericat
  • Lesser Blum


The statistical mechanics of a mixture of hard-core ions and dipoles in one dimension, namely, the one-dimensional version of the so-called nonprimitive model of an electrolyte, is considered by stressing the effect of the charge-dipole interactions and the hard-core repulsions on the thermodynamics and, especially, on the many-body functions of the systems. The adaptation of Baxter's generating function technique to this model lets us express the thermodynamic and structural functions in terms of a non-Hermitian generalized Hill-type Hamiltonian. The eigenvalues and eigenfunctions of this differential operator yield, in closed form, then-body correlation functions in the bulk and near the container's walls. We also comment on the screening of the electric fields by the system ions and study the Donnan equilibrium when one of the ionic species in the mixture cannot diffuse through a semipermeable membrane.

Key words

One-dimensional systems non-nearest-neighbor forces many-body functions nonprimitive electrolytes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. K. Percus, inSimple Models of Equilibrium and Nonequilibrium Phenomena, J. L. Lebowitz, ed. (North-Holland, Amsterdam, 1987).Google Scholar
  2. 2.
    L. Van Hove,Physica 16:137 (1950).Google Scholar
  3. 3.
    M. Kac,Phys. Fluids 2:8 (1959).Google Scholar
  4. 4.
    G. A. Baker, Jr.,Phys. Rev. 122:1477 (1961).Google Scholar
  5. 5.
    S. F. Edwards and A. Lenard,J. Math. Phys. 3:778 (1962).Google Scholar
  6. 6.
    H. Kunz,Ann. Phys. (NY)85:303 (1974).Google Scholar
  7. 7.
    R. Baxter,Phys. Fluids 7:38 (1964).Google Scholar
  8. 8.
    R. Baxter,Phys. Fluids 8:687 (1965).Google Scholar
  9. 9.
    J. L. Lebowitz, Private communication.Google Scholar
  10. 10.
    F. Vericat and L. Blum,Physica 145A:190 (1987).Google Scholar
  11. 11.
    F. Vericat and L. Blum, unpublished.Google Scholar
  12. 12.
    F. Vericat and L. Blum,J. Chem. Phys. 82:1492 (1985).Google Scholar
  13. 13.
    M. Aizenman and P. A. Martin,Commun. Math. Phys. 78:99 (1980).Google Scholar
  14. 14.
    M. Aizenman and J. Fröhlich,J. Stat. Phys. 26:347 (1981).Google Scholar
  15. 15.
    L. Tonks,Phys. Rev. 50:955 (1936).Google Scholar
  16. 16.
    Z. W. Salsburg, R. W. Zwanzig, and J. G. Kirkwood,J. Chem. Phys. 21:1098 (1953).Google Scholar
  17. 17.
    F. Zernike and J. Prins,Z. Phys. 41:184 (1927).Google Scholar
  18. 18.
    D. Hendersom, L. Blum, and J. L. Lebowitz,J. Eiectroanalyt. Chem. 102:315 (1979).Google Scholar
  19. 19.
    L. Blum and D. Henderson,J. Chem. Phys. 74:1902 (1981).Google Scholar
  20. 20.
    E. Martina,Chem. Phys. Lett. 94:205 (1983).Google Scholar
  21. 21.
    Y. Zhou and G. Stell,J. Chem. Phys. 89:7020 (1988).Google Scholar
  22. 22.
    Ph. Choquard, H. Kunz, Ph. A. Martin, and M. Navet, inPhysics in One Dimension, J. Bernasconi and T. Schneider, eds. (Springer, Berlin, 1981).Google Scholar
  23. 23.
    H. Fröhlich,Theory of Dielectrics (Oxford University Press, London, 1958).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Fernando Vericat
    • 1
  • Lesser Blum
    • 2
  1. 1.Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB)Universidad Nacional de La PlataLe PlataArgentina
  2. 2.Department of Physics, Faculty of Natural SciencesUniversity of Puerto RicoRío Piedras, Puerto Rico

Personalised recommendations