Journal of Chemical Ecology

, Volume 16, Issue 5, pp 1707–1718 | Cite as

Isolation and characterization of phytotoxic compounds from asparagus (Asparagus officinalis L.) roots

  • A. C. Hartung
  • M. G. Nair
  • A. R. Putnam
Article

Abstract

Potential allelochemicals from aqueous extracts of dried asparagus (Asparagus officinalis L.) roots were isolated and characterized. Active fractions separated by HPLC included ferulic, isoferulic, malic, citric, and fumaric acids. Soxhlet extraction of the residues also produced phytotoxic caffeic acid. Although none of these compounds, when applied singly, was active enough to account for the phytotoxicity of asparagus extracts, their combined effect might be additive or synergistic. An extract from lyophilized fresh root tissues contained a fraction that was one order of magnitude more toxic than any compound obtained from the dried roots. The most active component was isolated by TLC and characterized by [1H]NMR as methylenedioxycinnamic acid (MDCA). This compound provided severe inhibition of curly cress (Lepidium sativum L.) root and shoot growth at concentrations of 25 ppm or above.

Key Words

Allelopathy asparagusic acid autotoxicity phytotoxicity caffeic and citric acid ferulic acid fumaric acid isoferulic acid malic acid methylenedioxycinnamic acid asparagus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cohen, S.I., andHeald, F.D. 1941. A wilt and root rot of asparagus caused byFusarium oxysporum Schlecht.Plant Dis. Rep. 25:503–609.Google Scholar
  2. Endo, R.M., andBurkholder, E.C. 1971. The association ofFusarium moniliforme with the crown rot complex of asparagus.Phytopathology 61:891 (abstract).Google Scholar
  3. Evanari, M. 1949. Germination inhibitors.Bot. Rev. 15(3):153–194.Google Scholar
  4. Grogan, R.G., andKimble, K.A. 1959. The association of Fusarium wilt with asparagus decline and replant problem in California.Phytopathology 99:122–125.Google Scholar
  5. Hartung, A.C., andStephens, C.T. 1983. Effects of allelopathic substances produced by asparagus on the incidence and severity ofFursarium crown rot.J. Chem. Ecol. 9:1163–1174.Google Scholar
  6. Hartung, A.C., andStephens, C.T. 1984. Allelopathic properties of asparagus: Interaction withFusarium spp. and bioassay techiques.Phytopathology 74(7):800 (abstract).Google Scholar
  7. Hartung, A.C., Putnam, A.R., andStephens, C.T. 1989. Inhibitory activity of asparagus root tissue and extracts on asparagus seedlings.J. Am. Soc. Hortic. Sci. 114:144–148.Google Scholar
  8. Herner, R.C., andVest, G. 1974. Asparagus workshop proceedings. Department of Horticulture, Michigan State University, East Lansing. pp. 79.Google Scholar
  9. Johnston, S.A., Springer, J.K., andLewis, G.D. 1979.Fusarium moniliforme as a cause of stem and crown rot of asparagus and its association with asparagus decline.Phytopathology 69:778–780.Google Scholar
  10. Kitihara, Y., Yanagawa, H., Kato, T., andTakahashi, N. 1972. Asparagusic acid, a new plant growth inhibitor in etiolated young asparagus shoots.Plant Cell Physiol. 13:923–925.Google Scholar
  11. Laufer, G.A., andGarrison, S.A. 1977. The effect of asparagus tissue on seed germination and asparagus seedling growth. Possible allelopathic interaction.HortSci. 12:385 (abstract).Google Scholar
  12. Lehle, F.R., andPutnam, A.R. 1982. Quantification of allelopathic potential of sorghum residues by novel indexing of Richards' function fitted to cumulative cress seed germination curves.Plant Physiol. 69:1212–1216.Google Scholar
  13. Mirocha, C.J., Devay, J.E., andWilson, E.E. 1966. Role of fumaric acid in the hull rot disease of almond.Phytopathology 51:851–860.Google Scholar
  14. Molisch, H. 1937. Der Einfluss einer Pflanze auf die andere Allelopathie. Fisher, Jena.Google Scholar
  15. Rice, E.L. 1984.Allelopathy. Academic Press, New York.Google Scholar
  16. Shafer, W.E. andGarrison, S.A. 1980A. Effects of decomposing asparagus root tissues on lettuce, tomato, and asparagus seed emergence.HortSci. 14:406 (abstract.).Google Scholar
  17. Shafer, W.E., andGarrison, S.A. 1980b. Effects of asparagus root extracts on lettuce and asparagus seed germination and growth.HortSci. 15:406–407 (abstract).Google Scholar
  18. Shafer, W.E., andGarrison, S.A. 1986. Allelopathic effects of soil incorporated asparagus roots on lettuce, tomato, and asparagus seedling emergence.HortSci. 21(1):82–84.Google Scholar
  19. Takasugi, M.,Yachida, Y.,Anetai, M.,Masamune, T., andKegasawa, K. 1975. Identification of asparagusic acid as a nematicide occurring naturally in the roots of asparagus.Chem. Lett. 43–44.Google Scholar
  20. Yang, H. 1982. Autotoxicity ofAsparagus officinalis L.J. Am. Soc. Hort. Sci., 107:860–862.Google Scholar
  21. Yanagawa, H., Kato, T., andKitahara, Y. 1972. Asparagusic acid, dihydroasparagusic acid and (S)-acetyldihydroasparagusic acid, a new plant growth inhibitors in etiolated youngAsparagus officinalis.Tetrahedron Lett. 25:2549–2552.Google Scholar
  22. Young, C.C. 1984. Autotoxication in root exudates ofAsparagus officinalis L.Plant Soil 82:247–253.Google Scholar
  23. Young, C.C. 1986. Autotoxication ofAsparagus officinalis, p. 317,in A.R. Putnam, and C-S, Tang (eds.). The Science of Allelopathy. John Wiley & Sons, New York.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • A. C. Hartung
    • 1
  • M. G. Nair
    • 1
  • A. R. Putnam
    • 1
  1. 1.Department of Horticulture and Pesticide Research CenterMichigan State UniversityEast Lansing

Personalised recommendations