Skip to main content
Log in

Characterization of near-millimeter wave materials by means of non-dispersive fourier transform spectroscopy

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

We have used non-dispersive Fourier-transformspectroscopic techniques to measure the complex indices of refraction of materials between frequencies of 120 and 550 GHz. Results are presented for crystal quartz, crosslinked polystyrene (Rexolite 1422), glass-loaded polytetrafluoroethylene (Duroid 5880) and a nickel ferrite (Trans-Tech 2-111). These results are compared with other data on these materials in this frequency range. The accuracy of these measurements yields a considerable improvement in the near-millimeter-wave characterization of several of these materials. For materials other than crystal quartz, our results are the first measurements of their properties over the entire frequency range studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. J. Simonis, Intl. J. Infrared and Millimeter Waves3, 439 (1982).

    Google Scholar 

  2. M. N. Afsar and K. J. Button, IEEE Trans. Microwave Theory Tech.MTT-31, 217 (1983).

    Google Scholar 

  3. J. R. Birch and T. J. Parker,Infrared and Millimeter Waves, Vol. 2, Chapter 3, ed. by K. J. Button, Academic Press, New York, N.Y. (1979).

    Google Scholar 

  4. G. W. Chantry, H. M. Evans, J. Chamberlain, and H. A. Gebbie, Infrared Phys.9, 85 (1969).

    Google Scholar 

  5. D. G. Moss, J. Phys.E10, 1170 (1977).

    Google Scholar 

  6. C. M. Randall and R. D. Rawcliffe, Appl. Opt.6, 1889 (1967).

    Google Scholar 

  7. E. V. Loewenstein and D. R. Smith, Appl. Opt.10, 577 (1971).

    Google Scholar 

  8. J. E. Chamberlain, Appl. Opt.6, 980 (1967).

    Google Scholar 

  9. G. J. Simonis, J. P. Sattler, and P. Brody, Appl. Optics (submitted for publication).

  10. P. Brody, J. P. Sattler, and G. J. Simonis, Ferroelectrics (in press) (1983).

  11. E. E. Russell and E. E. Bell, J. Opt. Soc. Am.57, 341 (1967).

    Google Scholar 

  12. R. G. Hones, J. Phys.D9, 819 (1976).

    Google Scholar 

  13. G. J. Simonis and R. D. Felock, Appl. Opt.22, 194 (1983).

    Google Scholar 

  14. J. Fontanella, C. Andeen, and D. Schuele, J. Appl. Phys.45, 2852 (1974).

    Google Scholar 

  15. W. F. Passchier, D. D. Konijk, M. Mandel, and M. N. Afsar, J. Phys.D10, 509 (1977).

    Google Scholar 

  16. E. V. Loewenstein, D. R. Smith, and R. L. Morgan, Appl. Opt.12, 398 (1973).

    Google Scholar 

  17. D. Charlemagne and A. Hadni, Opt. Acta16, 53 (1969).

    Google Scholar 

  18. G. J. Simonis and B. Redman, Intl. J. of Infrared and Millimeter Waves (submitted for publication).

  19. M. N. Afsar, Ph.D. Thesis, U. London (1978).

  20. Kappler Crystal Optics, Inc., 1244 Highland Street, Holliston, MA.

  21. G. J. Simonis, IEEE Trans. Microwave Theory Tech.MTT-31, 356 (1983).

    Google Scholar 

  22. Technical notes on Rexolite 1422, C-LEC Plastics, Inc, Beverly, New Jersey.

  23. K. H. Breeden and A. P. Sheppard, Microwave J., 59 (November 1967).

  24. K. H. Breeden and A. P. Sheppard, Radio Science3, 205 (February 1968).

    Google Scholar 

  25. F. Sobel, F. L. Wentworth, and J. C. Wiltse, IRE Trans. Microwave Theory Tech.MTT-9, 512 (1961).

    Google Scholar 

  26. J. J. Taub and H. J. Hindin, Rev. Sci. Instrum.34, 1056 (1963).

    Google Scholar 

  27. J. E. Degenford and P. D. Coleman, Proc. IEEE54, 520 (1966).

    Google Scholar 

  28. A. Von Hippel,Dielectric Materials and Applications, The Technology Press of MIT and John Wiley and Sons, New York, N.Y. (1954).

    Google Scholar 

  29. W. H. Block, Master's Thesis, U. Illinois (1968).

  30. J. M. Dutta and C. R. Jones, North Carolina Central University, Durham, N.C. (private communication).

  31. Data sheet for RT/Duroid 5880, Rogers Corporation, Micromat Division, Box 700, Chandler, Arizona 85224, revised Jan. 1978.

  32. Specification Bulletin on Type TT2-111 Nickel Ferrite, Trans-Tech, Inc, Adamstown, MD, Bulletin No. 120-67, Aug. 1, 1972.

  33. R. West, Trans-Tech, Inc, Adamstown, MD (private communication).

  34. P. A. Miles, W. B. Westphal, and A. Von Hippel, Rev. Mod. Phys.29, 279 (1957).

    Google Scholar 

  35. W. H. von Aulock, ed.,Handbook of Microwave Ferrite Materials, Academic Press, New York (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simonis, G.J., Sattler, J.P., Worchesky, T.L. et al. Characterization of near-millimeter wave materials by means of non-dispersive fourier transform spectroscopy. Int J Infrared Milli Waves 5, 57–72 (1984). https://doi.org/10.1007/BF01014034

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01014034

Key Words

Navigation