Temperature compensated, high permittivity dielectric resonators for millimeter wave systems

  • G. B. Morgan


The properties of selected low loss, temperature compensated high permittivity microwave and millimetre wave dielectrics are summarised and experimental convenience suggests that planar hybrid microstrip is the preferred circuit technology for the initial studies of dielectric resonators at the millimetre wavelengths. Data are presented for temperature stabilised oscillators and some simple band pass filters are discussed.

Key words

millimetres integrated circuits dielectric materials high permittivity temperature compensation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 2.
    G. J. Simonis, ‘Index to the literature dealing with the near-millimetric wave properties of materials’, Int. J. of IR and mm waves,3, 429–469, 1982.Google Scholar
  2. 3.
    J. R. Birch and R. N. Clarke, ‘Dielectric and optical measurements from 30 to 1000 GHz’, The Radio and Electronic Engineer,52, 565–584, 1982.Google Scholar
  3. 4.
    M. N. Asfar and K. J. Button, preprint on ‘Precise millimetre wave measurements of complex refractive index, complex dielectric permittivity and loss tangent of GaAs, Si, SiO2, Al2O3, BeO, macor and glass’. To appear in IEEE Trans. on M.T.T. Feb. 1983.Google Scholar
  4. 5.
    M. R. Stiglitz: ‘Dielectric resonators: past, present and futuze’, M.J.,24, 19–36, July 1981.Google Scholar
  5. 6.
    J. K. Plourde and C. L. Ren, ‘Application of dielectric resonators in microwave components’, IEEE Trans.MTT29, 754–770, August 1981.Google Scholar
  6. 7.
    A. S. Dib, M. Eng. Thesis, University of Wales, ‘Low cost, high Q planar MIC oscillators’, 1980.Google Scholar
  7. 8.
    K. Wakino and Y. Konishi, ‘Bandpass filter with dielectric materials used for broadcasting channel filter’, IEEE Trans.BC26, 1–6, 1980.Google Scholar
  8. 9.
    Y. Tokumitsu, M. Ishizaki, T. Saito and E. Matsumoto, ‘A 50 GHz MIC transmitter/receiver using a dielectric resonator oscillator’, IEEE MTT-S Digest, 228–230, Dallas, July 1982.Google Scholar
  9. 10.
    E. Hagihara, H. Ogawa, N. Imai and M. Akaike, ‘A 26 GHz miniaturised MIC transmitter/receiver’, IEEE Trans,MTT30, 235–242, March 1982.Google Scholar
  10. 11.
    M. Dydyk, ‘Apply high Q resonators to mm-wave microstrip’, Microwaves, 62–63, December 1980.Google Scholar
  11. 12.
    R. C. Kell, E. E. Riches, P. Brigginshaw, G. E. Old, A. J. Thomas, R. F. Mayo and D. F. Rendle, ‘Novel temperaturestable ceramics for microwave dielectric resonators and microstrip substrates’, Electron Lett.6, 614–616, Sept. 1970.Google Scholar
  12. 13.
    D. J. Massé and R. A. Pucel, ‘A temperature stable band pass filter using dielectric resonators’, Proc. IEEE (Lett),60, 730–731, June 1972.Google Scholar
  13. 14.
    T. Takada and M. Ohmori, ‘Frequency triplers and quadruplers with GaAs Schottky-barrier diodes at 450 and 600 GHz’, IEEE Trans.MTT27, 519–523, May 1979.Google Scholar
  14. 15.
    A. Rosen, M. Caulton, P. Stabile, A. M. Gombar, W. M. Janton, C. P. Wu, J. F. Corboy and C. W. Magee, ‘Silicon as a millimetre wave monolithically integrated substrate—a new look’, RCA Rev.42, 633–660, December 1981.Google Scholar
  15. 16.
    A. Gopinath, ‘Maximum Q factor of microstrip resonators’, IEEE Trans.MTT29, 128–131, February 1981.Google Scholar
  16. 17.
    C. Seashore and D. R. Singh, ‘MM wave component trade-offs for tactical systems’, M. J.25, 41–42, June 1982.Google Scholar
  17. 18.
    J. C. Sethares and S. J. Naumann, ‘Design of microwave dielectric resonators’, IEEE Trans,MTT14, 2–7, January 1966.Google Scholar
  18. 19.
    M. Dydyk, ‘Dielectric resonators add Q to MIC filters’, Microwaves, 150–160, December 1977.Google Scholar
  19. 20.
    W. Thorpe, ‘Low cost Q band components’, MSc Thesis, University of Wales, 1982. (For brief details see Digest No. 1982/4, Colloquium on ‘Microwave filters’, IEE, Group ElO, January 1982.)Google Scholar
  20. 21.
    G. B. Morgan, ‘Stabilisation of a W band microstrip oscillator by a dielectric resonator’, Electron Lett.18, 556–558, June 1982.Google Scholar
  21. 22.
    G. B. Morgan, ‘The use of temperature compensated Ba2Ti9O20 dielectric resonators to stabilise W band microstrip oscillators’, 7th Int. Conf. on IR and mm waves, Marseille, 1983, Paper L. 5. 2.Google Scholar
  22. 23.
    M. Verplanken and J. Van Bladel, ‘The magnetic-dipole resonances of ring resonators of very high permittivity’, IEEE Trans.MTT27, 328–333, 1979.Google Scholar
  23. 24.
    S. B. Cohn, ‘Microwave bandpass filters containing high Q dielectric resonators’, IEEE Trans,MTT16, 218–227, 1968.Google Scholar
  24. 25.
    S. E. Miller, ‘A survey of integrated optics’, IEEE, J. Quantum Electron.,QE-8, 199–205, 1972.Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • G. B. Morgan
    • 1
  1. 1.Dept. of Physics, Electronics and Electrical EngineeringUniversity of Wales Institute of Science and TechnologyCardiffWales

Personalised recommendations