Skip to main content
Log in

A density-corrected quantum Boltzmann equation

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Binary correlations are a recognized part of the pair density operator, but the influence of binary correlations on the singlet density operator is usually not emphasized. Here free motion and binary correlations are taken as independent building blocks for the structure of the nonequilibrium singlet and pair density operators. Binary correlations are assumed to arise from the collision of twofree particles. Together with the first BBGKY equation and a retention of all terms that are second order in gas density, a generalization of the Boltzmann equation is obtained. This is an equation for thefree particle density operator rather than for the (full) singlet density operator. The form for the pressure tensor calculated from this equation reduces at equilibrium to give the correct (Beth-Uhlenbeck) second virial coefficient, in contrast to a previous quantum Boltzmann equation, which gave only part of the quantum second virial coefficient. Generalizations to include higher-order correlations and collision types are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Boltzmann,Wein. Ber. 66:275 (1972) (Collected Works, Vol. 1, p. 315).

    Google Scholar 

  2. L. Waldmann,Z. Naturforsch. 12a:660 (1957).

    Google Scholar 

  3. R. F. Snider,J. Chem. Phys. 32:1051 (1960).

    Google Scholar 

  4. E. Wigner,Phys. Rev. 40:479 (1932).

    Google Scholar 

  5. F. M. Chen and R. F. Snider,J. Chem. Phys. 46:3937 (1967).

    Google Scholar 

  6. R. F. Snider and B. C. Sanctuary,J. Chem. Phys. 55:1555 (1971).

    Google Scholar 

  7. M. W. Thomas and R. F. Snider,J. Stat. Phys. 2:61 (1970).

    Google Scholar 

  8. J. Yvon,J. Phys. Radium 21:569 (1960).

    Google Scholar 

  9. E. Beth and G. E. Uhlenbeck,Physica 4:915 (1937).

    Google Scholar 

  10. J. de Boer,Rep. Prog. Phys. 12:305 (1949).

    Google Scholar 

  11. J. C. Rainwater and R. F. Snider,J. Chem. Phys. 65:4958 (1976).

    Google Scholar 

  12. J. de Boer,Physica 15:680 (1949).

    Google Scholar 

  13. H. S. Green,Physica 15:882 (1949).

    Google Scholar 

  14. F. Laloé and W. J. Mullin,J. Stat. Phys. 59:725 (1990).

    Google Scholar 

  15. N. Bogolubov,J. Phys. (USSR) 10:265 (1946); Problems of a dynamical theory in statistical physics, inStudies in Statistical Physics, Vol. I, Part A, J. de Boer and G. E. Uhlenbeck, eds. (North-Holland, Amsterdam, 1962).

    Google Scholar 

  16. M. Born and H. S. Green,Proc. R. Soc. Lond. A 188:10 (1946).

    Google Scholar 

  17. J. G. Kirkwood,J. Chem. Phys. 14:180 (1946).

    Google Scholar 

  18. J. Yvon,La Théorie Statistique des Fluides et L'Equation d'Etat (Hermann, Paris, 1935).

    Google Scholar 

  19. B. Kahn, Dissertation, University of Utrecht (1938); reprinted inStudies in Statistical Mechanics, Vol. III, J. de Boer and G. E. Uhlenbeck, eds. (North-Holland, Amsterdam, 1965).

  20. J. E. Mayer and E. W. Montroll,J. Chem. Phys. 9:2 (1941).

    Google Scholar 

  21. G. E. Uhlenbeck and G. W. Ford, inStudies in Statistical Mechanics, Vol. 1, Part B, J. de Boer and G. E. Uhlenbeck, eds. (North-Holland, Amsterdam, 1962), p. 119.

    Google Scholar 

  22. F. Laloë,J. Phys. (Paris)50:1851 (1989).

    Google Scholar 

  23. G. Tastevin, P. J. Nacher, and F. Laloë,J. Phys. (Paris)50:1879 (1989).

    Google Scholar 

  24. G. Tastevin, P. J. Nacher, and F. Laloë, inProceedings of the 3rd International Conference on Spin-Polarized Quantum Systems (Torino, Italy, 1988), S. Stringari, ed. (World Scientific, Singapore, in press).

    Google Scholar 

  25. J. T. Lowry and R. F. Snider,J. Chem. Phys. 61:2320 (1974).

    Google Scholar 

  26. H. D. Ursell,Proc. Camb. Phil. Soc. 23:685 (1927).

    Google Scholar 

  27. W. Ebeling, W. D. Kraeft, and D. Kremp,Theory of Bound States and Ionization Equilibrium in Plasmas and Solids (Akademie-Verlag, Berlin, 1976).

    Google Scholar 

  28. J. W. Essam and M. E. Fisher,Rev. Mod. Phys. 42:271 (1970).

    Google Scholar 

  29. H. S. Green,The Molecular Theory of Fluids (North-Holland, Amsterdam, 1952) [reprinted by Dover, New York, 1969].

    Google Scholar 

  30. D. H. Berman and R. F. Snider,J. Chem. Phys. 71:1740 (1979).

    Google Scholar 

  31. J. H. Irving and J. G. Kirkwood,J. Chem. Phys. 18:817 (1950).

    Google Scholar 

  32. H. J. Kreuzer,Nonequilibrium Thermodynamics and Its Statistical Foundations (Oxford University Press, Oxford, 1981).

    Google Scholar 

  33. H. Weyl,Z. Phys. 46:1 (1927).

    Google Scholar 

  34. S. Imam-Rahajoe and C. F. Curtiss,J. Chem. Phys. 47:5269 (1967).

    Google Scholar 

  35. K. E. Hawker, Ph.D. Thesis, University of Texas at Austin (1975).

  36. E. G. D. Cohen,Physica 28:1025 (1962).

    Google Scholar 

  37. J. H. Ferziger and H. G. Kaper,Mathematical Theory of Transport Processes in Gases (North-Holland, Amsterdam, 1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snider, R.F. A density-corrected quantum Boltzmann equation. J Stat Phys 61, 443–465 (1990). https://doi.org/10.1007/BF01013975

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01013975

Key words

Navigation