Journal of Statistical Physics

, Volume 61, Issue 1–2, pp 365–386 | Cite as

Interchangeability and bounds on the effective conductivity of the square lattice

  • O. Bruno
  • K. Golden


The effective conductivityσ* of an infinitely interchangeable two-component random medium is considered. This class of media includes cell materials in the continuum and the bond lattice on ℤ d , where the cells or bonds are randomly assigned the conductivitiesσ1 andσ2 (σ1,σ2ne0) with probabilitiesp1 andp2=1−p1. A rigorous basis for the very old and widely used low volume fraction expansion ofσ* is established, by proving thatσ* is an analytic function ofp2 in a suitable domain containing [0, 1]. In the case of the bond lattice ind=2, rigorous fourth-order upper and lower bounds onσ* valid for allp2,σ1, andσ2 are derived. The four perturbation coefficients entering into the bounds are obtained from the first-order volume fraction coefficient using the method of infinite interchangeability.

Key words

Effective conductivity random resistor network composites cell materials perturbation expansions bounds 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. N. Miller,J. Math. Phys. 10:1988 (1969).Google Scholar
  2. 2.
    J. M. Ziman,J. Phys. C 1:1532 (1968).Google Scholar
  3. 3.
    J. C. Maxwell,A Treatise on Electricity and Magnetism (Clarendon Press, Oxford, 1892).Google Scholar
  4. 4.
    W. F. Brown,J. Chem. Phys. 23:1514 (1955).Google Scholar
  5. 5.
    D. J. Bergman,Phys. Rep. C 43:377 (1978).Google Scholar
  6. 6.
    Z. Hashin and S. Shtrikman,J. Appl. Phys. 33:3125 (1962).Google Scholar
  7. 7.
    G. W. Milton,J. Appl. Phys. 52:5294 (1981).Google Scholar
  8. 8.
    K. Golden and G. Papanicolaou,Commun. Math. Phys. 90:473 (1983).Google Scholar
  9. 9.
    K. Golden, Convexity in random resistor networks, inProceedings of SIAM Workshop on Random Media and Composite Materials, R. V. Kohn and G. W. Milton, eds. (1988).Google Scholar
  10. 10.
    O. Bruno, The effective conductivity of an infinitely interchangeable mixture, Ph. D. Thesis, New York University (1989).Google Scholar
  11. 11.
    O. Bruno, The effective conductivity of an infinitely interchangeable mixture,Commun. Pure Appl. Math., to appear.Google Scholar
  12. 12.
    A. S. Sangani and A. Acrivos,Proc. R. Soc. Lond. A 386:263 (1983).Google Scholar
  13. 13.
    J. B. Keller,J. Math. Phys. 5:548 (1964).Google Scholar
  14. 14.
    A. M. Dykhne,Sov. Phys. JETP 32:63 (1971).Google Scholar
  15. 15.
    G. W. Milton,J. Appl. Phys. 52:5286 (1981).Google Scholar
  16. 16.
    K. Golden,J. Mech. Phys. Sol. 34:333 (1986).Google Scholar
  17. 17.
    G. W. Milton,J. Mech. Phys. Sol. 30:177 (1982).Google Scholar
  18. 18.
    D. J. Bergman and Y. Kantor,J. Phys. C 14:3365 (1981).Google Scholar
  19. 19.
    M. Avellaneda and O. Bruno,J. Math. Phys. 31:2047 (1990).Google Scholar
  20. 20.
    G. Papanicolaou and S. Varadhan, Boundary value problems with rapidly oscillating random coefficients, inColloquia Mathematica Societatis János Bolyai 27, Random Fields, Esztergom, Hungary 1979 (North-Holland, Amsterdam, 1982), p. 835.Google Scholar
  21. 21.
    N. I. Akhiezer and I. M. Glazman,The Theory of Linear Operators in Hilbert Space (Ungar, New York, 1966).Google Scholar
  22. 22.
    S. Kirkpatrick,Rev. Mod. Phys. 45:574 (1973).Google Scholar
  23. 23.
    M. H. Ernst, P. F. J. van Velthoven, and Th. M. Nieuwenhuizen,J. Phys. A 20:949 (1987).Google Scholar
  24. 24.
    K. Golden, Bounds for effective parameters of multicomponent media by analytic continuation, Ph. D. Thesis, New York University (1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • O. Bruno
    • 1
  • K. Golden
    • 2
  1. 1.School of MathematicsUniversity of MinnesotaMinneapolis
  2. 2.Department of MathematicsPrinceton UniversityPrinceton

Personalised recommendations