Skip to main content
Log in

Conformal invariance in incommensurate phases

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study finite-size corrections to the free energy of free-fermion models on a torus with periodic, twisted, and fixed boundary conditions. Inside the critical (striped-incommensurate) phase, the free energy densityf(N, M) on anN×M square lattice with periodic (or twisted) boundary conditions scales asf(N, M)=f ∞−A(s)/(NM)+.... We derive exactly the finite-size-scaling (FSS) amplitudesA(s) as a function of the aspect ratios=M/N. These amplitudes are universal because they do not depend on details of the free-fermion Hamiltonian. We establish an equivalence between the FSS amplitudes of the free-fermion model and the Coulomb gas system with electric and magnetic defect lines. The twist angle generates magnetic defect lines, while electric defect lines are generated by competition between domain wall separation and system size. The FSS behavior of the free-fermion model is consistent with predictions of the theory of conformal invariance with the conformal chargec=l. For instance, the FSS amplitude on an infinite cylinder with fixed boundary conditions is found to be one-quarter of that with periodic boundary conditions. Finally, we conjecture the exact form of the FSS amplitudes for an interacting-fermion model on a torus. Numerical calculations employing the Bethe Ansatz confirm our conjecture in the infinite-cylinder limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. N. Barber, inPhase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, eds. (Academic, New York, 1983).

    Google Scholar 

  2. V. Privman, inFinite Size Scaling and Numerical Simulations of Statistical Systems, V. Privman, ed. (World Scientific, Singapore, 1990).

    Google Scholar 

  3. J. L. Cardy,Finite Size Scaling (North-Holland, Amsterdam, 1988).

    Google Scholar 

  4. H. W. Blöte, J. L. Cardy, and M. P. Nightingale,Phys. Rev. Lett. 56:742 (1986); I. Affleck,Phys. Rev. Lett. 56:746 (1986).

    Google Scholar 

  5. J. L. Cardy, inPhase Transitions and Critical Phenomena, Vol. 11, C. Domb and J. L. Lebowitz, eds. (Academic, New York, 1987).

    Google Scholar 

  6. M. P. Nightingale and H. W. J. Blöte,J Phys. A 16:L657 (1983).

    Google Scholar 

  7. H. Park and M. den Nijs,J. Phys. A 22:3663 (1989); J.-S. Wang, R. H. Swendsen, and R. Kotecký,Phys. Rev. Lett. 63:109 (1989); H. Park and M. Widom,Phys. Rev. Lett. 63:1193 (1989); H. Park,J. Phys. A 23:1789 (1990).

    Google Scholar 

  8. M. den Nijs, inPhase Transitions and Critical Phenomena, Vol. 12, C. Domb and J. L. Lebowitz, eds. (Academic, New York, 1988).

    Google Scholar 

  9. N. M. Bogoliubov, A. G. Izergin, and N. Yu Reshetikhin,J. Phys. A 20:5361 (1987).

    Google Scholar 

  10. F. Woynarovich, H.-P. Eckle, and T. T. Truong,J. Phys. A 22:4027 (1989).

    Google Scholar 

  11. B. Nienhuis, inPhase Transitions and Critical Phenomena, Vol. 11, C. Domb and J. L. Lebowitz, ed. (Academic, New York, 1987).

    Google Scholar 

  12. C. B. Thorn,Phys. Rep. 67:171 (1980).

    Google Scholar 

  13. C. Itzykson and J. B. Zuber,Nucl. Phys. B 275:580 (1986); P. di Francesco, H. Saleur, and J. B. Zuber,J. Stat. Phys. 49:57 (1987).

    Google Scholar 

  14. H. Park and M. Widom,Phys. Rev. Lett. 64:1076 (1990).

    Google Scholar 

  15. R. J. Baxter,Exactly Solvable Models in Statistical Mechanics (Academic, London, 1982).

    Google Scholar 

  16. F. C. Alcaraz, M. N. Barber, M. T. Batchelor, R. J. Baxter, and G. R. W. Quispel,J. Phys. A 20:6397 (1987).

    Google Scholar 

  17. W. Li, H. Park, and M. Widom,J. Phys. A 23:L573 (1990).

    Google Scholar 

  18. V. L. Pokrovsky and A. L. Talapov,Phys. Rev. Lett. 42:65 (1979).

    Google Scholar 

  19. A. E. Ferdinand,J. Math. Phys. 8:2332 (1967); A. E. Ferdinand and M. E. Fisher,Phys. Rev. 185:832 (1969).

    Google Scholar 

  20. S. M. Bhattacharjee, Ph. D. thesis, Carnegie-Mellon University, Pittsburgh, Pensylvania (1984); S. M. Bhattacharjee and J. F. Nagle,Phys. Rev. A 31:3199 (1985).

    Google Scholar 

  21. H. Park and M. den Nijs,Phys. Rev. B 38:565 (1988).

    Google Scholar 

  22. Bateman Manuscript Project,Higher Transcendental Functions (McGraw-Hill, New York, 1953), Vol. 2.

  23. E. H. Lieb,Phys. Rev. Lett. 18:1046 (1967).

    Google Scholar 

  24. F. D. M. Haldane,Phys. Rev. Lett. 45:1358 (1980).

    Google Scholar 

  25. L. P. Kadanoff and A. C. Brown,Ann. Phys. (N.Y.)121:318 (1979).

    Google Scholar 

  26. F. C. Alcaraz, M. N. Barber, and M. T. Batchelor,Phys. Rev. Lett. 58:771 (1987);Ann. Phys. (N.Y.)182:280 (1988).

    Google Scholar 

  27. C. J. Hamer,J. Phys. A 18:L1133 (1985);19:3335 (1986).

    Google Scholar 

  28. C. J. Hamer and M. T. Batchelor,J. Phys. A 21:L173 (1988).

    Google Scholar 

  29. W. Li and H. Park, submitted toJ. Phys. A (1990).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, H., Widom, M. Conformal invariance in incommensurate phases. J Stat Phys 61, 51–78 (1990). https://doi.org/10.1007/BF01013954

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01013954

Key words

Navigation