Skip to main content
Log in

High-temperature series for scalar-field Lattice models: Generation and analysis

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

An implementation of the free-embedding scheme for high-temperature series generation on the body-centered cubic family of lattices in arbitrary dimensiond is, described. Series to order 21 in inverse temperature are tabulated for several scalar field models, both for the magnetic susceptibility and for the second moment of the spin correlation function. The critical behavior of a family of 3-dimensional “double Gaussian” models, which interpolate continuously between the spin-1/2 Ising model and the Gaussian model, is analyzed in detail away from the Gaussian model limit using confluent inhomogeneous secondorder differential approximants. With our best estimate of the correction-to-scaling exponent,θ=0.52±0.03, the leading exponents for the susceptibility and correlation length for this family are consistent with universality and are given byγ=1.237±0.002 and ν=0.630±0.0015, respectively, andη=2−γ/ν=0.0359±0.0007.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Baker, Jr., and J. M. Kincaid,J. Stat. Phys. 24:469 (1981).

    Google Scholar 

  2. M. E. Fisher,Rep. Prog. Phys. 30:615 (1967).

    Google Scholar 

  3. M. A. Moore, D. Jasnow, and M. Wortis,Phys. Rev. Lett. 22:940 (1969).

    Google Scholar 

  4. J. C. Le Guillou and J. Zinn-Justin,Phys. Rev. 21:3976 (1980);J. Phys. Lett. (Paris)46: L-137 (1985);J. Phys. (Paris)48:19 (1987).

    Google Scholar 

  5. B. G. Nickel and B. Sharpe,J. Phys. A: Math. Gen. 12:1819 (1979).

    Google Scholar 

  6. D. S. Gaunt and M. F. Sykes,J. Phys. A: Math. Gen. 12:L25 (1979).

    Google Scholar 

  7. J. Zinn-Justin,J. Phys. (Paris)40:969 (1979).

    Google Scholar 

  8. D. S. Gaunt, inPhase Transitions: Cargèse 1980, M. Levy, J. C. Le Guillou, and J. Zinn-Justin, eds. (Plenum Press, New York, 1982), p. 217.

    Google Scholar 

  9. B. G. Nickel, inPhase Transitions: Cargèse 1980, M. Levy, J. C. Le Guillou, and J. Zinn-Justin, eds. (Plenum Press, New York, 1982), p. 291.

    Google Scholar 

  10. J. Zinn-Justin,J. Phys. (Paris)42:783 (1981).

    Google Scholar 

  11. P. Moussa,J. Stat. Phys. 27:711 (1982).

    Google Scholar 

  12. R. Z. Roskies,Phys. Rev. B 24:5305 (1981).

    Google Scholar 

  13. J.-H. Chen, M. E. Fisher, and B. G. Nickel,Phys. Rev. Lett. 48:630 (1982).

    Google Scholar 

  14. B. Nickel and M. Dixon,Phys. Rev. B 26:3965 (1982).

    Google Scholar 

  15. J. Adler, M. Moshe, and V. Privman,Phys. Rev. B 26:3958 (1982).

    Google Scholar 

  16. M. Ferer and M. Velgakis,Phys. Rev. B 27:2839 (1983).

    Google Scholar 

  17. J. L. Gammel and D. C. Power,J. Phys. A: Math. Gen. 16:L359 (1983); J. L. Gammel, J. Nuttal, and D. C. Power, St. Louis University Preprint (1983).

    Google Scholar 

  18. M. J. George and J. J. Rehr,Phys. Rev. Lett. 53:2063 (1984).

    Google Scholar 

  19. M. E. Fisher and J.-H. Chen,J. Phys. (Paris)46:1645 (1985).

    Google Scholar 

  20. A. J. Guttmann,J. Phys. A: Math. Gen. 20:1855 (1987).

    Google Scholar 

  21. A. J. Liu and M. E. Fisher,Physica A 156:35 (1989).

    Google Scholar 

  22. B. Nickel,Physica (Utrecht)106A:48 (1981).

    Google Scholar 

  23. J. J. Rehr and B. Nickel,J. Stat. Phys. 24:710 (1981).

    Google Scholar 

  24. J. J. Rehr and B. G. Nickel,Bull. Am. Phys. Soc. 26:242 (1981).

    Google Scholar 

  25. M. Blume,Phys. Rev. 141:517 (1966); H. W. Capel,Physica 32:966 (1966).

    Google Scholar 

  26. J. R. Klauder,Ann. Phys. (N.Y.)117:19 (1979).

    Google Scholar 

  27. G. A. Baker, Jr., and A. R. Bishop,J. Phys. A: Math. Gen. 15:L201 (1982).

    Google Scholar 

  28. J. J. Rehr, G. S. Joyce, and A. J. Guttmann,J. Phys. A: Math. Gen. 13:1587 (1980).

    Google Scholar 

  29. M. E. Fisher and R. M. Kerr,Phys. Rev. Lett. 39:667 (1977); M. E. Fisher and H. Au-Yang,J. Phys. A: Math. Gen. 12:1677 (1979).

    Google Scholar 

  30. F. J. Wegner,Phys. Rev. B 5:4529 (1972).

    Google Scholar 

  31. F. S. Acton,Numerical Methods That Work (Harper and Row, New York, 1970), p. 552.

    Google Scholar 

  32. C. Bagnuls and C. Bervillier,Phys. Rev. B 24:1226 (1981).

    Google Scholar 

  33. M. Wortis, inPhase Transitions and Critical Phenomena, Vol. 3, C. Domb and M. S. Green, eds. (Academic Press, London, 1974), p. 113.

    Google Scholar 

  34. D. E. Knuth,The Art of Computer Programming, Vol. 3 (Addison-Wesley, Reading, Massachusetts, 1973).

    Google Scholar 

  35. M. A. Moore, D. M. Saul, and M. Wortis,J. Phys. C: Solid State 7:162 (1974).

    Google Scholar 

  36. G. S. Joyce, inPhase Transitions and Critical Phenomena, Vol. 2, C. Domb and M. S. Green, eds. (Academic Press, London, 1972), p. 375.

    Google Scholar 

  37. B. R. Heap,J. Math. Phys. 7:1582 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nickel, B.G., Rehr, J.J. High-temperature series for scalar-field Lattice models: Generation and analysis. J Stat Phys 61, 1–50 (1990). https://doi.org/10.1007/BF01013953

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01013953

Key words

Navigation