Blut

, Volume 40, Issue 2, pp 137–145 | Cite as

Adenine and hypoxanthine metabolism in phythohemagglutinin-stimulated and unstimulated human lymphocytes

  • M. M. Müller
  • G. Pischek
  • O. Scheiner
  • H. Stemberger
  • G. Wiedermann
Original Works

Summary

The uptake and subsequent metabolism of adenine and hypoxanthine in phytohemagglutinin-stimulated and unstimulated peripheral human blood lymphocytes, freshly prepared or cultured, were studied. To investigate the initial step of nucleic acid metabolism the incorporation of14C-purines into the acid soluble material was examined. No preferential uptake of adenine or hypoxanthine was observed in freshly prepared and cultured lymphocytes during an incubation of 1 h. However, cultured cells utilized approximately 1/3 of the purines compared to freshly drawn cells. Within the cells 2/3 of adenine and 1/2 of hypoxanthine were metabolized to nucleotides (mainly AMP and ADP). Incubation of lymphocytes with PHA for 1 h produced in the freshly prepared cells an increase of adenine- and hypoxanthine-uptake to 191% and 153%, in 48 h stimulated cells to 158% and 132%. There was, however, no change in the relative rates of the metabolic routes though the intracellular concentrations of nucleotides formed increased with adenine as substrate to 152% and with hypoxanthine to 161% during a 1 h stimulation. In contrast no enhanced formation of acid soluble nucleotide formation could be observed with PHA stimulation during 48 h. The increased rates of purine uptake and metabolism apparent 1 h after addition of mitogen may be due to an altered transport mechanism at the beginning of the transformation as an adaptive response to the increased requirements for the synthetic processes soon to follow. Once the lymphocytes are transformed no demand of purines is necessary and the uptake and metabolism is switched off.

Key words

Blood lymphocytes Adenine metabolism Hypoxanthine metabolism Phytohemagglutinin 

Der Stoffwechsel von Adenin und Hypoxanthin in Phytohaemagglutinin-stimulierten und unstimulierten menschlichen Lymphozyten

Zusammenfassung

Die Aufnahme und der Stoffwechsel von Adenin und Hypoxanthin in Phytohaemagglutinin-stimulierten und unstimulierten Blutlymphozyten wurden untersucht. Durch den Einbau von14C-markierten Purinen in die säurelösliche Fraktion sollte der 1. Schritt des Nukleinsäurestoffwechsels gemessen werden. Zwischen frisch präparierten und 48 h kultivierten Lymphozyten konnte keine bevorzugte Aufnahme von Adenin bzw. Hypoxanthin festgestellt werden. Die kultivierten Zellen metabolisierten jedoch im Vergleich zu den frisch gewonnenen Lymphozyten nur etwa 1/3 der Purine. Intrazellulär wurde 2/3 des Adenins und die Hälfte des Hypoxanthins hauptsächlich zu den Nukleotiden AMP und ADP metabolisiert. Eine 1stündige Inkubation mit PHA führte in den frischen Lymphozyten zu einem Anstieg der Adenin-bzw. Hypoxanthinaufnahme auf 191% bzw. 153% verglichen mit den Ausgangswerten. Hingegen stiegen die entsprechenden Werte während einer PHA-Stimulation von 48 h auf 158% bzw. 132% an. Obwohl die intrazelluläre Bildung der Nukleotide aus Adenin bzw. Hypoxanthin nach 1 h PHA-Stimulation auf 152% bzw. 161% anstieg, kam es zu keiner Änderung der relativen Durchflußraten der verschiedenen Stoffwechselwege. Im Gegensatz war nach 48 h Stimulation keine vermehrte Nukleotidbildung nachweisbar. Sowohl die gesteigerte Aufnahme als auch die erhöhte Nukleotidbildung nach 1 h PHA-Stimulation könnte auf geänderte Transporteigenschaften der Lymphozytenmembran hinweisen und die erste Antwort der Zelle auf den mitogenen Reiz darstellen. Dadurch könnte der gesteigerte Bedarf an niedermolekularen Substanzen für die nachfolgenden Biosynthesen gedeckt werden. Nach abgeschlossener Transformation würde kein vermehrter Bedarf bestehen und somit die Aufnahme und Metabolisierung gedrosselt werden.

Schlüsselwörter

Blutlymphozyten Adeninstoffwechsel Hypoxanthinstoffwechsel Phytohaemagglutinin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Giblett, E.R., Anderson, J.E., Cohen, F., Pollara, B., Neuwissen, H.J.: Adenosine deaminase deficiency in two patients with severely impaired cellular deficiency. Lancet2, 1067–1069 (1972)Google Scholar
  2. 2.
    Giblett, E.R., Ammann, J.J., Wara, D.W., Sandman, R., Diamond, L.K.: Nucleoside phosphorylase deficiency in a child with severely defective T-cell immunity and normal B-cell immunity. Lancet1, 1010–1013 (1975)Google Scholar
  3. 3.
    Hershfield, M.S., Seegmiller, J.E.: Regulation of de novo purine biosynthesis in human lymphoblasts. J. Biol. Chem.251, 7348–7354 (1976)Google Scholar
  4. 4.
    Hovi, T., Allison, A.C., Allsop, J.: Rapid increase in phosphoribosylpyrophosphate concentration after mitogenic stimulation of lymphocytes. FEBS letters55, 291–293 (1975)Google Scholar
  5. 5.
    Johnson, S.M., North, M.E., Asherson, G.L., Allsop, J., Watts, R.W.E., Webster, A.D.B.: Lymphocyte purine 5′-nucleotidase deficiency in primary hypogammaglobulinaemia. Lancet1, 168–171 (1977)Google Scholar
  6. 6.
    Klingenberg, M., Pfaff, E.: Means of terminating reactions. In: Methods of enzymology. Colowick, S.P., Kaplan, N.O., (eds.). Vol. 10, pp. 680–684. New York: Academic Press 1967Google Scholar
  7. 7.
    Kolassa, N., Roos, H., Pfleger, K.: A separation of purine derivatives by thin-layer chromatography on silica gel plates suitable for metabolic studies. J. Chromatogr.66, 175–177 (1972)Google Scholar
  8. 8.
    Kramers, M.T.C., Catovsky, D., Cherchi, M., Galton, D.A.G.: 5′-nucleotidase in cord blood lymphocytes. Leukemia Res.1, 279–281 (1977)Google Scholar
  9. 9.
    Mendelsohn, J.Sr., Skinner, A., Kornfeld, S.: The rapid induction by phytohemagglutinin of increased-aminoisobutyric acid uptake by lymphocytes. J. Clin. Invest.50, 818–826 (1971)Google Scholar
  10. 10.
    Molenaar, J.L., Van Galen, M., Hannema, A.J., Zeijlemaker, W., Pondman, K.W.: Spontaneous release of Fc receptor-like material from human lymphoblastoid cell lines. Eur. J. Immunol.7, 230–236 (1977)Google Scholar
  11. 11.
    Müller, M.M., Kraupp, M., De Bruyn, C.H.M.M.: Purine base transport in normal and mutant erythrocytes. Human Heredity29, 118–123 (1979)Google Scholar
  12. 12.
    Müller, M.M., Pischek, G., Scheiner, O., Stemberger, H., Wiedermann, G.: Purine metabolism in human lymphocytes. Blut 38, 447–455 (1979)Google Scholar
  13. 13.
    Ortaldo, J.R., Bonnard, G.D., Herberman, R.B.: Cytotoxic reactivity of human lymphocytes cultured in vitro. J. Immunol.119, 1351–1357 (1977)Google Scholar
  14. 14.
    Paterson, A.R.P., Oliver, J.M.: Nucleoside transport. II. Inhibition by p-nitrobenzylthioguanosine and related compounds. Can. J. Biochem.49, 271–274 (1971)Google Scholar
  15. 15.
    Peters, J.H., Hausen, P.: Effect of phytohemagglutinin on lymphocyte membrane transport. I. Stimulation of uridine uptake. Eur. J. Biochem.19, 502–508 (1971)Google Scholar
  16. 16.
    Peters, J.H., Hausen, P.: Effect of phytohemagglutinin on lymphocyte membrane transport. II. Stimulation of “faciliated diffusion” of 3-o-methylglucose. Eur. J. Biochem.19, 509–513 (1971)Google Scholar
  17. 17.
    Ramot, B., Brok-Simoni, F., Barnea, N., Bank, I., Holtzmann, F.: Adenosine deaminase (ADA) activity in lymphocytes of normal individuals and patients with chronic lymphatic leukaemia. Br. J. Haematol.36, 67–70 (1977)Google Scholar
  18. 18.
    Ramseier, H.: Spontaneous release of T-cell receptors for alloantigens. II. Induction of antibodies to T-cell receptors. Eur. J. Immunol.5, 23–26 (1975)Google Scholar
  19. 19.
    Raivio, K.O., Hovi, T.: Adenine and adenosine metabolism in phytohemagglutinin (PHA)-stimulated and unstimulated normal human lymphocytes. Adv. Exp. Med. Biol.76 A, 448–455 (1977)Google Scholar
  20. 20.
    Scholar, E.M., Calabresi, P.: Identification of the enzymatic pathways of nucleotide metabolism in human lymphocytes and leukemia cells. Cancer Res.33, 94–103 (1973)Google Scholar
  21. 21.
    Schwarzmeier, J.D., Moser, K.: Studies on the synthesis de novo of purines in normal, PHA-stimulated and leukemic lymphocytes. In: Metabolism of erythrocytes, leukocytes and thrombocytes, p. 419, Deutsch, E., Gerlach, E., Moser, K., Wilmanns, W. (eds.). Stuttgart: G. Thieme 1972Google Scholar
  22. 22.
    Segel, G.B., Lichtman, M.A.: Potassium transport in human blood lymphocytes treated with phytohemagglutinin. J. Clin. Invest.58, 1358–1369 (1976)Google Scholar
  23. 23.
    Snyder, F.F., Mendelsohn, J., Seegmiller, J.E.: Adenosine metabolism in phytohemagglutinin-stimulated human lymphocytes. J. Clin. Invest.58, 654–666 (1976)Google Scholar
  24. 24.
    WHO/IARC sponsored workshop on human B- and T-cells. Scand. J. Immunol.3, 521–522 (1974)Google Scholar
  25. 25.
    Yamamura, M.: Standardization of lymphocyte transformation to phytohaemagglutinin. Clin. Exp. Immunol.14, 457–467 (1973)Google Scholar
  26. 26.
    Yasmineh, W.G., Brynes, R.K., Lum, C.T., Abbasnezhad, M.: Adenosine deaminase activity in lymphocytes of normal persons, leukemic patients and kidney-transplant recipients. Clin. Chem.23, 2024–2028 (1977)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • M. M. Müller
    • 1
  • G. Pischek
    • 2
  • O. Scheiner
    • 3
  • H. Stemberger
    • 4
  • G. Wiedermann
    • 4
  1. 1.Allgemeines Krankenhaus der Stadt WienII. Medizinische UniversitätsklinikWienAustria
  2. 2.Institut für Medizinische Chemie der UniversitätWienAustria
  3. 3.Institut für allgemeine und experimentelle Pathologie der UniversitätWienAustria
  4. 4.Institut für spezifische Prophylaxe und Tropenmedizin der UniversitätWienAustria

Personalised recommendations