Advertisement

Journal of Chemical Ecology

, Volume 14, Issue 10, pp 1905–1917 | Cite as

Chemical ecology and the search for marine antifoulants

Studies of a predator-prey symbiosis
  • Donald J. Gerhart
  • Daniel Rittschof
  • Sara W. Mayo
Article

Abstract

The gorgonian octocoralLeptogorgia virgulata (Phylum Coelenterata, Class Anthozoa) is rarely overgrown by fouling organisms and is avoided by most predators. Laboratory experiments suggest that secondary metabolites and calcium carbonate spicules interact synergistically to provideL. virgulata with an effective defense against predatory fish. In spite of these defenses,L. virgulata is consumed by the symbiotic, trophically specialized gastropodNeosimnia uniplicata, which closely mimics the appearance of the gorgonian.Neosimnia uniplicata is readily eaten by fish and appears not to acquire an effective antipredator defense from its gorgonian host. Extracts ofLeptogorgia virgulata andNeosimnia uniplicata strongly inhibited the settlement of the barnacleBalanus atnphitrite. Bioassay-directed purification of the more potent antifouling agents fromL. virgulata led to the isolation of two previously described, diterpenoid hydrocarbons, known as pukalide and epoxypukalide. A third inhibitor of barnacle settlement, whose structure is presently unknown, was obtained from bothL. virgulata andN. uniplicata. When assayed for ability to inhibit barnacle settlement, these three compounds possessed EC50 values ranging from 19 to 55 ng/ml. These secondary metabolites may prevent the overgrowth ofL. virgulata by fouling organisms in nature. The allelochemicals ofL. virgulata, N. uniplicata, and other marine organisms may provide nonpolluting alternatives to existing, commercial antifoulants based on derivatives of tri-n-butyltin.

Key words

Chemical defense biofouling marine antifoulants symbiosis predator-prey interactions gorgonians gastropods Leptogorgia virgulata eosimnia uniplicata 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakus, G.J. 1981. Chemical defense mechanisms and fish feeding behavior on the Great Barrier Reef, Australia.Science 211:497–499.Google Scholar
  2. Bakus, G.J., Targett, N.M., andSchulte, B. 1986. Chemical ecology of marine organisms: An overview.J. Chem. Ecol. 12:951–987.Google Scholar
  3. Bayer, F.M. 1961. The Shallow-Water Octocorallia of the West Indian Region. Studies on the Fauna of Curacao and other Caribbean Islands, No. 55. Martinus Nijhoff, The Hague.Google Scholar
  4. Bergquist, P.R. 1978. Sponges. Hutchinson and Company, London.Google Scholar
  5. Burkholder, P.R. 1973. The ecology of marine antibiotics and coral reefs, pp. 117–203,in O.A. Jones and R. Endean (eds.). Biology and Geology of Coral Reefs, Vol. II. Biology I. Academic Press, New York.Google Scholar
  6. Ciereszko, L.S. 1962. Chemistry of coelenterates. III. Occurrence of antimicrobial terpenoid compounds in zooxanthellae of alcyonarians.Trans. N. Y. Acad. Sci. 00:917–919.Google Scholar
  7. Cimino, G. andDestefano, S. 1978. Chemistry of Mediterranean gorgonians: simple indole derivatives fromParamuricea chamaeleon.Comp. Biochem. Physiol. 61:361–362.Google Scholar
  8. Coll, J.C., andSammarco, P.W. 1983. Terpenoid toxins of soft corals (Cnidaria, Octocorallia): Their nature, toxicity, and ecological significance.Toxicon (Suppl.) 3:69–72.Google Scholar
  9. Coll, J.C., Tapiolas, L.M., Bowden, B.F., Webb, L., andMarsh, H. 1983. Transformation of soft coral (Coelenterata, Octocorallia) terpenes byOvula ovum (Mollusca, Prosobranchia).Mar. Biol. 74(1):35–40.Google Scholar
  10. Colwell, R.R. 1983. Biotechnology in the marine sciences.Science 222:19–24.Google Scholar
  11. Costlow, J.D., andTipper, R.C. (eds.) 1984. Marine Biodeterioration: An Interdisciplinary Study. Naval Institute Press, Annapolis, Maryland. 384 pp.Google Scholar
  12. Faulkner, D.J. 1977. Interesting aspects of marine natural products chemistry.Tetrahedron 33:1421–1443.Google Scholar
  13. Faulkner, D.J. 1984. Marine natural products: Metabolites of marine invertebrates.Nat. Prod. Rep. 1:551–598.Google Scholar
  14. Faulkner, D.J., andGhiselin, M.T. 1983. Chemical defense and evolutionary ecology of dorid nudibranchs and some other opisthobranch gastropods.Mar. Ecol. Prog. Ser. 13:295–301.Google Scholar
  15. Fenical, W. 1982. Natural products chemistry in the marine environment.Science 215:923–928.Google Scholar
  16. Fenical, W., Okuda, R.K., Bandurraoa, M.M., Culver, P., andJacobs, R.S. 1981. Lophotoxin: A novel neuromuscular toxin from Pacific sea whips of the genusLophogorgia.Science 212:1512–1513.Google Scholar
  17. Gerhart, D.J. 1984. Prostaglandin A2: An agent of chemical defense in the Caribbean gorgonianPlexaura homomalla.Mar. Ecol. Prog. Ser. 19:181–187.Google Scholar
  18. Gerhart, D.J. 1985. Chemical ecology on the coral reef: Prostaglandins in the gorgonianPlexaura homomalla.Proc. Fifth Int. Coral Reef Congress 6:57–62.Google Scholar
  19. Gerhart, D.J. 1986. Prostaglandin A2 in the Caribbean gorgonianPlexaura homomalla: Evidence against allelopathic and antifouling roles.Biochem. Syst. Ecol. 14:417–421.Google Scholar
  20. Goad, L.J. 1978. The sterols of marine invertebrates: Composition, biosynthesis, and metabolism, pp. 76–172,in P.J. Scheuer (ed.). Marine Natural Products: Chemical and Biological Perspectives, Vol. 2. Academic Press, New York.Google Scholar
  21. Hadfield, M.G., andCiereszko, L.S. 1978. Action of cembranolides derived from octocorals on larvae of the nudibranchPhestilla sibogae, pp. 145–150,in P.N. Kaul and C.J. Sinderman (eds.). Drugs and Food from the Sea: Myth or Reality? University of Oklahoma, Norman.Google Scholar
  22. Harvell, C.D., andSuchanek, T.H. 1987. Partial predation on tropical gorgonians byCyphoma gibbosum (Gastropoda).Mar. Ecol. Prog. Ser. 38:37–44.Google Scholar
  23. Keifer, P.A., Rinehart, K.L., andHooper, I.R. 1986. Renillafoulins, antifouling diterpenes from the sea pansyRenilla reniformis (Octocorallia).J. Org. Chem. 51:4450–4454.Google Scholar
  24. Kinzie, R.A. 1974.Plexaura homomalla: The biology of a harvestable marine resource, pp. 22–38,in F.M. Bayer and A.J. Weinheimer (eds.). Prostaglandins fromPlexaura homomalla: Biology, Utilization and Ecology of a Major Medical Marine Resource. University of Miami, Miami.Google Scholar
  25. Legendre, L., andLegendre, P. 1983.Numerical Ecology. Elsevier Scientific, Amsterdam. 419 pp.Google Scholar
  26. Lieberman, H.R. 1983. Estimating EC50 using the probit technique: A basic computer program.Drug Chem. Toxicol. 6:111–116.Google Scholar
  27. Littler, M.M., Littler, D.S., andTaylor, P.R. 1987. Animal-plant defense associations: Effects on the distribution and abundance of tropical reef macrophytes.J. Exp. Mar. Biol. Ecol. 105:107–122.Google Scholar
  28. Missakian, M.G., Burreson, B.J., andScheuer, P.J. 1975. Pukalide, a furanocembranolide from the soft coralSinularia abupta.Tetrahedron 31:2513–2515.Google Scholar
  29. Osborn, H.L. 1885. Mimicry in marine Mollusca.Science 6:9–10.Google Scholar
  30. Paine, R.T. 1963. Food recognition and predation on opisthobranchs byNavanax inermis.Veliger 6:1–9.Google Scholar
  31. Patton, W.K. 1972. Studies on the animal symbionts of the gorgonian coral,Leptogorgia virgulata (Lamarck).Bull. Mar. Sci. 22:419–431.Google Scholar
  32. Rittschof, D., andBonaventura, J. 1986. Macromolecular cues in marine systems.J. Chem. Ecol. 12:1013–1023.Google Scholar
  33. Rittschof, D., Branscomb, E.S., andCostlow, J.D. 1984. Settlement and behavior in relation to flow and surface in larval barnacles,Balanus amphitrite Darwin.J. Exp. Mar. Biol. Ecol. 82:131–146.Google Scholar
  34. Rittschof, D., Hooper, I.R., Branscomb, E.S., andCostlow, J.D. 1985. Inhibition of barnacle settlement and behavior by natural products from whip corals,Leptogorgia virgulata (Lamarck, 1815).J. Chem. Ecol. 11:551–563.Google Scholar
  35. Rittschof, D., Hooper, I.R., andCostlow, J.D. 1986. Barnacle settlement inhibitors from sea pansies,Renilla reniformis.Bull. Mar. Sci. 39:376–382.Google Scholar
  36. Robertson, R. 1970. Review of the predators and parasites of stony corals, with special reference to symbiotic prosobranch gastropods.Pac. Sci. 24:43–54.Google Scholar
  37. Scheuer, P.J. (ed.) 1985. The organic chemistry of marine products. Symposia in Print No. 18.Tetrahedron 41:979–1118.Google Scholar
  38. Silveira, F.L. Da, andVan'thof, T. 1977. Regeneration in the gorgonianPlexaura flexuosa (Cnidaria, Octocorallia).Bijdr. Dierkd. 47:98–108.Google Scholar
  39. Sokal, R.R., andRohlf, F.J. 1983. Biometry. Freeman, San Francisco.Google Scholar
  40. Standing, J., Hooper, I.R., andCostlow, J.D. 1982. Inhibition and induction of barnacle settlement by natural products present in octocorals.J. Chem. Ecol. 10:823–834.Google Scholar
  41. Stoecker, D. 1978. Resistance of a tunicate to fouling.Biol. Bull. 155:615–626.Google Scholar
  42. Stoecker, D. 1980. Chemical defenses of ascidians against predators.Ecology 61:1327–1334.Google Scholar
  43. Targett, N.M., Bishop, S.S., McConnell, O.J., andYoder, J.A. 1983. Antifouling agents against the benthic marine diatomNavicula salinicola: Homarine from the gorgonianLeptogorgia virgulata andL. setacea and analogs.J. Chem. Ecol. 9:817–829.Google Scholar
  44. Thompson, T.E. 1976. Biology of Opisthobranch Molluscs, Vol. I. The Ray Society, London.Google Scholar
  45. Thompson, T.E., andBrown, G.H. 1984. Biology of Opisthobranch Molluscs, Vol. II. The Ray Society, London.Google Scholar
  46. Tursch, B. Braekman, J.C., Daloze, D., andKaisin, M. 1978. Terpenoids from coelenterates, pp. 247–296,in P.J. Scheuer (ed.). Marine Natural Products: Chemical and Biochemical Perspectives, Vol. 2. Academic Press, New York.Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • Donald J. Gerhart
    • 1
  • Daniel Rittschof
    • 1
  • Sara W. Mayo
    • 1
  1. 1.Duke University Marine LaboratoryPivers IslandBeaufort

Personalised recommendations