Journal of Statistical Physics

, Volume 46, Issue 3–4, pp 679–708 | Cite as

Hydrodynamic theory of electron transport in a strong magnetic field

  • M. C. Marchetti
  • T. R. Kirkpatrick
  • J. R. Dorfman


The mode coupling contribution to the transverse transport coefficients of a three-dimensional one-component plasma in a strong external magnetic field is calculated. For very strong fields it is found that the tagged particle diffusion rate, the thermal diffusion rate, and the coefficient of viscosity in the plane orthogonal to the field have a Bohm-like ∼B−1 behavior. The mode coupling mechanism responsible for such an effect is always one that involves the finite-frequency upper hybrid modes.

Key words

Electron gas mode coupling theory transport magnetic field 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. C. Marchetti, T. R. Kirkpatrick, and J. R. Dorfman,Phys. Rev. A 29:2960 (1984).Google Scholar
  2. 2.
    J. B. Taylor and B. McNamara,Phys. Fluids 15:1492 (1971).Google Scholar
  3. 3.
    D. Montgomery, C. S. Liu, and G. Vahala,Phys. Fluids 15:815 (1972).Google Scholar
  4. 4.
    H. Okuda and J. M. Dawson,Phys. Rev. Lett. 28:1625 (1972);Phys. Fluids 16:408 (1973).Google Scholar
  5. 5.
    H. Naitou, T. Kamimure, and J. M. Dawson,J. Phys. Soc. Japan 46:258 (1979).Google Scholar
  6. 6.
    J. A. Krommes and C. Oberman,J. Plasma Phys. 16:229 (1976).Google Scholar
  7. 7.
    H. A. Rose,Phys. Rev. Lett. 48:260 (1982).Google Scholar
  8. 8.
    B. Bernu,J. Phys. Lett. (Paris)42:L253 (1981).Google Scholar
  9. 9.
    J. S. Cohen and L. G. Suttorp,Physica 126A:308 (1984).Google Scholar
  10. 10.
    S. I. Braginskii, inReviews of Plasma Physics, M. A. Leontovich, ed. (Plenum, New York, 1965), Vol. 1, p. 205.Google Scholar
  11. 11.
    E. M. Lifschitz and L. P. Pitaevskii,Physical Kinetics (Pergamon, New York, 1981).Google Scholar
  12. 12.
    M. N. Gurnee, W. N. Hooke, G. J. Goldsmith, and M. H. Brennan,Phys. Rev. A 5:158 (1972).Google Scholar
  13. 13.
    K. Hübner and A. Neidig,Phys. Lett. A 44:233 (1973).Google Scholar
  14. 14.
    S. Ichimaru,Basic Principles of Plasma Physics (Benjamin, New York, 1973).Google Scholar
  15. 15.
    L. Kadanoff and J. Swift,Phys. Rev. Google Scholar
  16. 16.
    Y. Pomeau and R. Resibois,Phys. Rep. 19:63 (1975).Google Scholar
  17. 17.
    M. H. Ernst and J. R. Dorfman,J. Stat. Phys. 12:311 (1975).Google Scholar
  18. 18.
    M. Baus,Physica 79A:377 (1975).Google Scholar
  19. 19.
    B. Bernu and P. Viellefosse,Phys. Rev. A 18:2345 (1978).Google Scholar
  20. 20.
    M. Baus and J. P. Hansen,Phys. Rep. 59:1 (1980).Google Scholar
  21. 21.
    M. Baus,J. Phys. A 11:2451 (1978).Google Scholar
  22. 22.
    J. P. Boon and S. Yip,Molecular Hydrodynamics (McGraw-Hill, New York, 1980).Google Scholar
  23. 23.
    M. C. Marchetti and T. R. Kirkpatrick,Phys. Rev. A 32:2981 (1985).Google Scholar
  24. 24.
    M. C. Marchetti and T. R. Kirkpatrick,J. Stat. Phys. 41:621 (1985).Google Scholar
  25. 25.
    M. C. Marchetti, unpublished.Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • M. C. Marchetti
    • 1
  • T. R. Kirkpatrick
    • 2
  • J. R. Dorfman
    • 2
  1. 1.Department of PhysicsCity College of the City University of New YorkNew York
  2. 2.Department of Physics and Astronomy and Institute for Physical Science and TechnologyUniversity of MarylandCollege Park

Personalised recommendations