Journal of Statistical Physics

, Volume 46, Issue 3–4, pp 559–565 | Cite as

Initial perpendicular isothermal susceptibility formulas for the transverse general-spin Ising and Blume-Capel models

  • B. Frank
  • M. Elofer
Articles

Abstract

Using a Kubo formula and the Suzuki identities, expressions are derived for the initial perpendicular susceptibilities χ of the transverse spin-S Ising and spin-S Blume-Capel models on regular and irregular lattices. χ is given in terms of the thermal average of a function of the peripheral sumOi= εjJi,jSj, where coupling to distant neighbors may be included, as well as arbitrary local parallel magnetic fieldshj. For the Ising model on a Bravais lattice, e.g., the susceptibility is given by
$$\chi _ \bot = Nm^2 S^{ - 2} \langle B_s (\beta [O_i + h_i ])/[O_i + h_i ]\rangle $$
whereBs is the Brillouin function. ForS=1/2, the formula of Fisher and the results of Horiguchi and Morita are regained. A connection is made with the general-spin work of Essam and Garelick.

Key words

Perpendicular susceptibility isothermal susceptibility Ising model Blume-Capel model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. E. Fisher,J. Math. Phys. 4:124 (1963).Google Scholar
  2. 2.
    J. Stephenson,J. Math. Phys. 5:1009 (1964).Google Scholar
  3. 3.
    R. Kubo,J. Phys. Soc. (Japan) 12:570 (1957).Google Scholar
  4. 4.
    T. Horiguchi and T. Morita,Can. J. Phys. 53:2375 (1975).Google Scholar
  5. 5.
    J. H. Barry, private communication; to be published.Google Scholar
  6. 6.
    Y. L. Wang and C. Wentworth,J. Appl. Phys. 57:3329 (1985).Google Scholar
  7. 7.
    Y. L. Wang, C. Wentworth, and B. Westwanski,Phys. Rev. B 32:1805 (1985).Google Scholar
  8. 8.
    J. H. Page, S. R. P. Smith, and D. R. Taylor,J. Phys. C 17:73 (1984); S. R. P. Smith, J. Phys. C17:41 (1984).Google Scholar
  9. 9.
    B. Frank, C. Y. Cheung, and O. G. Mouritsen,J. Phys. C 15:1233 (1982).Google Scholar
  10. 10.
    M. Elofer and B. Frank,Physica A 135:261 (1986).Google Scholar
  11. 11.
    B. Frank and M. Elofer, to be published.Google Scholar
  12. 12.
    L. Macot and B. Frank, to be published.Google Scholar
  13. 13.
    K. Nath and B. Frank,J. Appl. Phys. 53:7971 (1982).Google Scholar
  14. 14.
    B. Frank and O. G. Mouritsen,J. Phys. C 16:2481 (1983).Google Scholar
  15. 15.
    M. Suzuki,Phys. Lett. 19:267 (1965).Google Scholar
  16. 16.
    M. Blume,Phys. Rev. 141:517 (1966).Google Scholar
  17. 17.
    H. W. Capel,Physica 32:966 (1966);33:295 (1976);37:423 (1967).Google Scholar
  18. 18.
    D. D. Betts, inPhase Transitions and Critical Phenomena, Vol. 3, C. Domb and M.S. Green, eds. (Academic Press, New York, 1974), Chapter 8.Google Scholar
  19. 19.
    J. W. Essam and H. Garelick,J. Phys. C 2:317 (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • B. Frank
    • 1
  • M. Elofer
    • 1
  1. 1.Department of PhysicsConcordia UniversityMontrealCanada

Personalised recommendations